Share This Article:

Elaboration of Amorphous-Clay Hybrid: (Al2Si2O7·1/2Li2O) Designed as a Single Ion Conducting Solid Electrolyte for Li-Ion Batteries

Abstract Full-Text HTML XML Download Download as PDF (Size:3668KB) PP. 1261-1272
DOI: 10.4236/ajac.2014.517132    2,255 Downloads   2,716 Views   Citations

ABSTRACT

Keying of lithium chloride alkali halide salt into the interlamellar space of nacrite clay mineral leads to a stable hybrid material that after calcination under inert atmosphere at 723 - 873 K induces an amorphous metahybrid. The electrochemical impedance spectroscopy (EIS) was performed to investigate the electric/dielectric properties of the hybrid with various parameters: frequency and temperature. Equivalent circuit was proposed to fit the EIS data. The experiment results show that the ionic conduction mechanism is related to the motion of Li+ cations which are thermally activated, named the hopping model. Furthermore, the resulting metahybrid obtained from dehydroxylation of the formal hybrid shows a superionic behavior with high ionic conductivity up to 10﹣2 S·m﹣1, good electrochemical stability and can be used as a solid electrolyte material for Li-ion batteries.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Jaafar, N. , Naamen, S. , Rhaiem, H. and Amara, A. (2014) Elaboration of Amorphous-Clay Hybrid: (Al2Si2O7·1/2Li2O) Designed as a Single Ion Conducting Solid Electrolyte for Li-Ion Batteries. American Journal of Analytical Chemistry, 5, 1261-1272. doi: 10.4236/ajac.2014.517132.

References

[1] Minami, T., Tatsumisago, M., Iwakura, C., Kohjiya, S. and Tanaka, I. (2005) Solid State Ionics for Batteries. Springer, Berlin.
http://dx.doi.org/10.1007/4-431-27714-5
[2] Kumar, P.P. and Yashonath, S. (2006) Ionic Conduction in the Solid State. Journal of Chemical Science, 118, 135-154.
http://dx.doi.org/10.1007/BF02708775
[3] Ghosh, A. and Kofinas, P. (2008) PEO Based Block Copolymer as Solid State Lithium Battery Electrolyte. ECS Transactions, 11, 131-137.
[4] Wang, M., Zhao, F., Guo, Z. and Dong, S. (2004) Poly(Vinylidene Fluoride-Hexafluoropropylene)/Organo-Montmorillonite Clays Nanocomposite Lithium Polymer Electrolytes. Electro-chimica Acta, 49, 3595-3602.
http://dx.doi.org/10.1016/j.electacta.2004.03.028
[5] Morenoa, M., Quijadad, R., Anaa, M.A.S., Benaventea, E., Romeroe, P.G. and Gonzáleza, G. (2011) Electrical and Mechanical Properties of Poly(Ethylene Oxide)/Intercalated Clay Polymer Electrolyte. Electrochimica Acta, 58, 112-118.
http://dx.doi.org/10.1016/j.electacta.2011.08.096
[6] He, P., Chen, B., Wang, Y., Xie, Z. and Dong, F. (2013) Preparation and Characterization of a Novel Organophilic Vermiculite/Poly(Methyl Methacry-late)/1-Butyl-3-Methylimidazolium Hexafluorophosphate Composite Gel Polymer Electrolyte. Electrochimica Acta, 111, 108-113.
http://dx.doi.org/10.1016/j.electacta.2013.07.192
[7] Prasanth, R., Shubha, N., Hng, H. H. and Srinivasan, M. (2013) Effect of Nano-Clay on Ionic Conductivity and Electrochemical Properties Of Poly(Vinylidene Fluoride) Based Nanocomposite Porous Polymer Membranes and Their Application as Polymer Electrolyte in Lithium Ion Batteries. European Polymer Journal, 49, 307-318.
http://dx.doi.org/10.1016/j.eurpolymj.2012.10.033
[8] Deka, M. and Kumar, A. (2011) Electrical and Electrochemical Studies of Poly (Vinylidene Fluoride)-Clay Nanocomposite Gel Polymer Electrolytes for Li-Ion Batteries. Journal of Power Sources, 196, 1358-1364.
http://dx.doi.org/10.1016/j.jpowsour.2010.09.035
[9] Elbokl, T.A. and Detellier, C. (2008) Intercalation of Cyclic Imides in Kaolinite. Journal of Colloid and Interface Science, 323, 338-348.
http://dx.doi.org/10.1016/j.jcis.2008.04.003
[10] Wypych, F. and Satyanarayana, K.G. (2004) Clay Surfaces, Fundamentals and Applications. Academic Press/Elsevier, Waltham/Amsterdam.
[11] Choudhary, S. and Sengwa, R.J. (2011) Ionic Conduction and Relaxation Processes in Melt Compounded Poly(Ethylene Oxide)-Lithium Perchlorate Trihydrate-Montmorillonite Nanocomposite Electrolyte. Indian Journal of Engineering and Materials Sciences, 18, 147-156.
[12] Gimenes, M.A., Profeti, L.P.R., Lassali, T.A.F., Graeff, C.F.O. and Oliveira, H.P. (2001) Synthesis Characterization, Electrochemical and Spectroelectrochemical Studies of an N-Cetyl-Trimethylammonium Bromide/V2O5 Nano-Composite. Langmuir, 17, 1975-1982.
http://dx.doi.org/10.1021/la0009386
[13] Huguenin, F., Ferreira, M., Zucolotto, V., Nart, F.C., Torresi, R.M. and Oliveira, O.N. (2004) Molecular-Level Manipulation of V2O5/Polyaniline Layer-by-Layer Films to Control Electrochromogenic and Electrochemical Properties. Chemistry of Materials, 16, 2293-2299.
http://dx.doi.org/10.1021/cm035171s
[14] Nefzi, H., Sediri, F., Hamzaoui, H. and Gharbi, N. (2012) Dielectric Properties and Electrical Conductivity of the Hybrid Organic-Inorganic Polyvanadates (H3N(CH2)4NH3)[V6O14]. Journal of Solid State Chemistry, 190, 150-156.
http://dx.doi.org/10.1016/j.jssc.2012.02.013
[15] Jaafar, N., Naamen, S., Ben Rhaiem, H. and Ben Haj Amara, A. Functionalization and Structural Characterization of a Novel Nacrite-LiCl Hybrid Composite Material. American Journal of Analytical Chemistry (Special Issue on X-Ray Diffraction). Accepted Article.
[16] Ben Haj Amara, A. (1997) X-Ray Diffraction, Infrared and TGA/DTG Analysis of Hydrated Nacrite. Clay Minerals, 32, 463-470.
http://dx.doi.org/10.1180/claymin.1997.032.3.08
[17] Ben Haj Amara, A., Ben Rhaiem, H. and Plancon, A. (2000) Structural Evolution of Nacrite as a Function of the Nature of the Intercalated Organic Molecules. Journal of Applied Crystallography, 33, 1351-1359.
http://dx.doi.org/10.1107/S0021889800011730
[18] Naamen, S., Ben Rhaiem, H. and Ben Haj Amara, A. (2004) XRD Study of the Nacrite/CsCl/H2O Intercalation Complexe. Materials Science Forum, 443-444, 59-64.
http://dx.doi.org/10.4028/www.scientific.net/MSF.443-444.59
[19] Jaafar, N., Ben Rhaiem, H. and Ben Haj Amara, A. (2014) Synthesis, Characterization and Applications of a New Nano-hybrid Composite: Nacrite/MgCl2.6H2O/Ethanol. International Conference on Composite Materials & Renewable Energy Applications (ICCMREA), Sousse, 22-24 January 2014, 1-6.
[20] Jaafar, N., Ben Rhaiem, H. and Ben Haj Amara, A. (2014) Correlation between Electrochemical Impedance Spectroscopy and Structural Properties of Amorphous Tunisian Metanacrite Synthetic Material. Advances in Materials Science and Engineering, 2014, Article ID: 469871.
http://dx.doi.org/10.1155/2014/469871
[21] Bottger, H. and Bryksin, V.V. (1985) Hopping Conduction in Solids. Akademie Verlag, Berlin, 169.
[22] Jonscher, A.K. (1992) Universal Relaxation Law. Chapter 5, Chelsea Dielectrics Press, London.
[23] Macdonald, J.R. (1987) Impedance Spectroscopy. John Wiley, New York.
[24] Hummel, R.E. (1993) Electronic Properties of Materials. Springer, New York.
[25] De Araujo, E.B., de Abreu, J.A.M., de Oliveira, R.S., de Paiva, J.A.C. and Sombra, A.S.B. (1997) Structure and Electrical Properties of Lithium Niobophosphate Glasses. Canadian Journal of Physics, 75, 747-758.
http://dx.doi.org/10.1139/p97-001
[26] Megdiche, M., Haibado, M., Louati, B., Hlel, F. and Guidara, K. (2010) AC Electrical Properties Study and Equivalent Circuit of a Monovalent-Mixed Pyrophosphate. Ionics, 16, 655-660.
http://dx.doi.org/10.1007/s11581-010-0447-9
[27] Réau, J.M., Rossignol, S., Tanguy, B., Rojo, J.M., Herrero, P., Rojas, R.M. and Sanz, J. (1994) Conductivity Relaxation Parameters of Some Ag+ Conducting Tellurite Glasses Containing AgI or the (AgI)0.75 (T1I)0.25 Eutectic Mixture. Solid State Ionics, 74, 65-73.
http://dx.doi.org/10.1016/0167-2738(94)90438-3
[28] Leluk, K., Orzechowski, K., Jerieb, K., Baranowskib, A., Slonkac, T. and Glowinskic, J. (2010) Dielectric Permittivity of Kaolinite Heated to High Temperatures. Journal of Physics and Chemistry of Solids, 71, 827-831.
http://dx.doi.org/10.1016/j.jpcs.2010.02.008
[29] Yariv, S. (1986) Interactions of Minerals of the Kaolin Group with Cesium Chloride and Deuteration of the Complexes. International Journal of Tropical Agricultural, 5, 310-322.
[30] Michaelian, K.H., Friesen, W.I., Yariv, S. and Nasser, A. (1991) Diffuse Reflectance Infrared Spectra of Kaolinite and Kaolinite/Alkali Halide Mixtures. Curve-Fitting of the OH Stretching Region. Canadian Journal of Chemistry, 69, 1786-1790.
http://dx.doi.org/10.1139/v91-262
[31] Rao, D.S. and Karat, P.P. (1994) Elastic Constants of Glasses in the System P2O5-Na2O-ZnO. Physics & Chemistry of Glasses, 35, 124.
[32] de Oliveira, A.P.N., Leonelli, L.B.C., Manfredini, T. and Pellacani, G.C. (1996) Physical Properties of Quenched Glasses in the Li2O-ZrO-SiO2 System. Journal of the American Ceramic Society, 79, 1092-1097.
http://dx.doi.org/10.1111/j.1151-2916.1996.tb08552.x
[33] Altaf, M. and Chaudhry, M.A. (2010) Physical Properties of Lithium Containing Cadmium Phosphate Glasses. Journal of Modern Physics, 1, 201-205.
http://dx.doi.org/10.4236/jmp.2010.14030
[34] Kim, Y.H., Yoon, M.Y., Lee, E.J. and Hwang, H.J. (2012) Effect of SiO2/B2O3 Ratio on Li Ion Conductivity of a Li2O-B2O3-SiO2 Glass Electrolyte. Journal of Ceramic Processing Research, 13, 37-41.
[35] Tatsumisago, M., Hamana, A., Minami, T. and Tanaka, M. (1983) Structure and Properties of Li2O-RO-Nb2O5 Glasses (R-Ba, Ca, Mg) Prepared by Twin-Roller Quenching. Journal of Non-Crystalline Solids, 56, 423-428.
http://dx.doi.org/10.1016/0022-3093(83)90506-9

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.