Antifungal Activity of Oleoresin and Fractions of Pinus elliottii Engelm and Pinus tropicalis against Phytopathogens


Microorganism resistance to the existing products is yet another difficulty that agriculturalists have to deal with. In this context, the search for new agricultural products that can fight phytopathogens has become increasingly important. Plants have played an important role in this process, because they can serve as a source of new compounds for drug discovery. Plants belonging to the genus Pinus produce an oleoresin that protects the plant against herbivores and pathogens. With a view to developing products that can combat fungal pathogens without harming the environment, this work aimed to evaluate the antifungal activity of the oleoresins and fractions of Pinus elliottii Engelm and Pinus tropicalis against phytopathogens. The methodology based on NCCLS M38-A standards aided antifungal activity assessment. The microdilution method helped to determine the Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC). The oleoresins of P. elliottii and P. tropicalis afforded the most significant results—they displayed fungicidal activity against all the tested species. MIC values were promising, especially the MIC of the oleoresin of P. elliottii against S. rolfsii (1.95 μg·mL-1). The MIC values of the oleoresins of P. elliottii and P. tropicalis ranged from 1.95 to 1000 μg·mL-1 and from 31.25 to 250 μg·mL-1, respectively. Fraction PT2 of P. tropicalis furnished the best results among all the assayed fractions: MIC values lay between 125 and 500 μg·mL-11. In conclusion, the oleoresin of P. tropicalis is a promising source of new antifungal agents for application in the treatment of phytopathogenic infections.

Share and Cite:

Andrade, G. , Abrão, F. , Silva, P. , Ambrósio, S. , Veneziani, R. , Cunha, W. , Pires, R. and Martins, C. (2014) Antifungal Activity of Oleoresin and Fractions of Pinus elliottii Engelm and Pinus tropicalis against Phytopathogens. American Journal of Plant Sciences, 5, 3898-3903. doi: 10.4236/ajps.2014.526408.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Pelegrini, P.B., Farias, L.R., Saúde, A.C.M., Costa, F.T., Bloch Jr., C., Silva, L.P., Oliveira, A.S., Gomes, C.E., Sales, M.P. and Franco, O.L. (2009) A Novel Antimicrobial Peptide from Crotalaria pallida Seeds with Activity against Human and Phytopahtogens. Current Microbiology, 59, 400-404.
[2] Santos, M., Diánez, F., De Cara, M. and Tello, J.C. (2008) Possibilities of Use of Vinasses in the Control of Fungi Phytopathogen. Bioresource Technology, 99, 9040-9043.
[3] Pacheco, R., Silva, R.R., Morini, S.S. and Brandão, C.R.A. (2009) A Comparison of the Leaf-Litter and Fauna in a Secondary Atlantic Forest with an Adjacent Pine Plantation in Southeastern Brazil. Neotropical Entomology, 38, 55-65.
[4] Langenheim, J. (2003) Plant Oleoresins: Chemical Evolution Ecology Ethnobotany. Timber Press, Portland.
[5] Karonen, M., Hämäläinen, M., Nieminen, R., Klika, K.D., Loponen, J., Ovcharenko, V.V., Moilanen, E. and Pihlaja, K. (2004) Phenolic Extractives from the Bark of Pinus sylvestris L. and Their Effects on Inflammatory Mediators Nitric Oxide and Prostaglandin E2. Journal of Agricultural and Food Chemistry, 52, 7532-7540.
[6] Politeo, O., Skocibusic, M., Maravic, A., Ruscic, M. and Milos, M. (2011) Chemical Composition and Antimicrobial Activity of the Essential Oil of Endemic Dalmatian Black Pine (Pinus nigra ssp. dalmatica). Chemistry & Biodiversity, 8, 540-547. http://dx.doi.10.1002/cbdv.201000185
[7] Keeling, C.I. and Bohlmann, J. (2006) Diterpene Resin Acids in Conifers. Phytochemistry, 67, 2415-2423. http://dx.doi.10.1016/j.phytochem.2006.08.019
[8] Rezzi, S., Bighelli, V.C. and Casanova, J. (2002) Direct Identification and Quantitative Determination of Acidic and Neutral Diterpenes Using 13C-NMR Spectroscopy. Application to the Analysis of Oleoresin of Pinus nigra. Applied Spectroscopy, 56, 312-317.
[9] Baraza, L.D., Joseph, D.D., Munissi, J.J.E., Nkunya, M.H.H., Arnold, N., Porzel, A. and Wessjohann, L. (2008) Antifungal Rosane Diterpenes and Other Constituents of Hugonia castaneifolia. Phytochemistry, 69, 200-205.
[10] Savluchinske-Feio, S., Curto, M.J.M., Gigante, B. and Roseiro, J.C. (2006) Antimicrobial Activity of Oleoresin Acid Derivatives. Applied Microbiology and Biotechnology, 72, 430-436.
[11] Leyva, M., Tacoronte, J.E., Marquetti, M.C., Scull, R., Tiomnova, O., Mesa, A. and Montada, D. (2009) Use of Essential Oils from Endemic Pinaceae as an Alternative for Aedes aegypti Control. Revista Cubana de Medicina Tropical, 61, 239-243.
[12] Hevia, Y., Sánchez, J., Tacoronte, J.E., Gutiérrez, A., Vázquez, A., Wong, L. and Tiomnova, O.T. (2009) Effect of Colophony on the Heart Activity and Hatching of Biomphalaria havanensis Eggs. Revista Cubana de Medicina Tropical, 61, 244-247.
[13] Gumiere, T., Ribeiro, C.M., Vasconcellos, R.L.F. and Cardoso, E.J.B.N. (2014) Indole-3-Acetic Acid Producing Root- Associated Bacteria on Growth of Brazil Pine (Araucaria angustifolia) and Slash Pine (Pinus elliottii). Antonie Van Leeuwenhoek, 105, 663-669.
[14] Leandro, L.F., Cardoso, M.J.O., Silva, S.D.C., Souza, M.G.M., Veneziani, R.C., Ambrosio, S.R. and Martins, C.H. (2014) Antibacterial Activity of Pinus elliottii and Its Major Compound, Dehydroabietic Acid, against Multidrug-Resistant Strains. Journal of Medical Microbiology, 63, 1649-1653.
[15] Silva, S.D.C., Souza, M.G.M., Cardoso, M.J.O., Moraes, T.S., Ambrósio, S.R., Sola Veneziani, R.C. and Martins, C.H. (2014) Antibacterial Activity of Pinus elliottii against Anaerobic Bacteria Present in Primary Endodontic Infections. Anaerobe, 30, 146-152.
[16] National Committee of Clinical Laboratory Standards (NCCLS) (2002) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Conidial-Forming Filamentous Fungi. Approved Standard NCCLS M38-A. National Committee of Clinical Laboratory Standards, Wayne.
[17] Holetz, F.B., Pessini, G.L., Sanches, N.R., Cortez, D.A.G., Nakamura, C.V. and Dias Filho, B.P. (2010) Screening of Some Plants Used in the Brazilian Folk Medicine for the Treatment of Infectious Diseases. Memórias do Instituto Oswaldo Cruz, 97, 1027-1031.
[18] Lins, S.R.O., Oliveira, S.M.A., Alexandre, E.R., Santos, A.M.G. and Oliveira, T.A.S. (2011) Alternative Control of Stem-Endrot in Mango. Summa Phytopathologica, 37, 121-126.
[19] David, E., Alvarez, S., Claudia, E., Salazar, G., Andres, M., Hurtado, B., Derian, M., Delgado, B. and Oscar Arango, B. (2011) Sensibilidad in vitro de Phytophthora infestans al extracto de fique (Furcraea gigantea vent.) y fungicidas sistemicos. Biotecnología en el Sector Agropecuarioy Agroindustrial, 9, 96-104.
[20] Mojica-Marín, V., Luna-Olvera, H.A., Sandoval-Coronado, C.F., Morales-Ramos, L.H., González-Aguilar, N.A., Pereyra-Alférez, B., Ruiz-Baca, E. and Elías-Santos, M. (2011) In Vitro Antifungal Activity of “Gobernadora” (Larrea tridentata (D.C.) Coville) against Phytophthora capsici Leo. African Journal of Agricultural Research, 6, 1058-1066.
[21] Domingues, R.J., De Souza, J.D.F., Töfoli, J.G. and Matheus, D.R. (2009) In Vitro Action of Plant Extracts on Colletotrichum acutatum, Alternaria solani and Scletorium rolfisii. Arquivos do Instituto de Biologia, 76, 643-649.
[22] Faria, F.A., Bueno, C.J. and Papa, M.F.S. (2009) Fungitoxic Activity of Momordica charantia L. to Control of Sclerotium rolsii Sacc. Acta Scientiarum. Agronomy, 31, 383-389.
[23] Ramírez-Chávez, E., Lucas-Valdez, L., Virgen-Calleros, G. and Molina-Torres, J. (2000) Actividad fungicida de la afinina y del extracto crudo de raíces de Heliopsis longipes en dos especies de sclerotium. Agrociencia, 34, 207-215.
[24] Rozwalka. L.C., Da Costa Lima, M.L.R.Z.C., de Mio, L.L.M. and Nakashima, T. (2008) Extracts, Decoctions and Essential Oils of Medicinal and Aromatic Plants in the Inhibition of Colletotrichum gloeosporioides and Glomerella cingulata Isolates from Guava Fruits. Ciência Rural, 38, 301-307.
[25] Costa, A.R.T., Amaral, M.F.Z.J., Martins, P.M., Paula, J.A.M., Fiuza, T.S., Tresvenzol, L.M.F., Paula, J.R. and Bara, M.T.F. (2011) Action of Syzygium aromaticum (L.) Merr. & L.M. Perry Essential Oil on the Hyphae of Some Phyto- pathogenic Fungi. Revista Brasileira de Plantas Medicinais, 13, 240-245.
[26] Cunico, M.M., Carvalho, J.L.S., Silva, V.C., Montrucchio, D.P., Kerber, V.A., Grigoletti Júnior, A., Auer, C.G., Miguel, M.D. and Miguel, O.G. (2004) Antifungal Evaluation of Extracts Obtained from Ottonia Martiana MIQ. (Piperaceae) on Three Plant Pathogens. Arquivos do Instituto de Biologia, 71, 141-143.
[27] Santos, M.R.A., Lima, R.A., Fernandes, C.F., Silva, A.G. and Facundo, V.A. (2011) Antifungal Activity of Piper marginatum L. (Piperaceae) Essential Oil in Vitro Fusarium oxysporum (Schlecht). Revista Saúde e Pesquisa, 4, 9-14.
[28] Seixas, P.T.L., Castro, H.C., Santos, G.R. and Cardoso, D.P. (2011) Fungitoxic Activity of Essential Oil of Citronella Grass (Cymbopogon nardus L.) and Compound Citronellal. Revista Brasileira de Plantas Medicinais, 13, 523-526.
[29] Oliveira, R.A.G., Lima, E.O., Vieira, W.L., Freire, K.R.L., Trajano, V.N., Lima, I.O., Souza, E.L., Toledo, M.S. and Silva-Filho, R.N. (2006) Study of the Interference of Essential Oils on the Activity of Some Antibiotic Used Clinically. Revista Brasileira de Farmacognosia, 16, 77-82.
[30] Leandro, L.M., Vargas, F.S., Barbosa, P.C.S., Neves, J.K.O., da Silva, J.A. and Veiga-Junior, V.F. (2012) Chemistry and Biological Activities of Terpenoids from Copaiba (Copaifera spp.) Oleoresins. Molecules, 17, 3866-3889. http://dx.doi.10.3390/molecules17043866

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.