On the Cauchy Problem for Von Neumann-Landau Wave Equation ()
Chuangye Liu1*,
Minmin Liu2
1Laboratory of Nonlinear Analysis, Department of Mathematics, Central China Normal University, Wuhan,
China.
2School of Science, Wuhan Institute of Technology, Wuhan, China.
DOI: 10.4236/jamp.2014.213143
PDF HTML XML
7,140
Downloads
7,894
Views
Citations
Abstract
In present paper we prove the local well-posedness for Von Neumann-Landau
wave equation by the T. Kato’s method.
Share and Cite:
Liu, C. and Liu, M. (2014) On the Cauchy Problem for Von Neumann-Landau Wave Equation.
Journal of Applied Mathematics and Physics,
2, 1224-1332. doi:
10.4236/jamp.2014.213143.
Conflicts of Interest
The authors declare no conflicts of interest.
References
[1]
|
Chen, Z. (2009) Dirichlet Problems for Stationary von Neumann-Landau Wave Equations. Acta Mathematica Scientia, 29, 1225-1232. http://dx.doi.org/10.1016/S0252-9602(09)60099-0
|
[2]
|
Cazenave, T. (2003) Semilinear Schrodinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, AMS.
|
[3]
|
Tao, T. (2006) Nonlinear Dispersive Equations: Local and Global Analysis. CBMS Regional Conference Series in Mathematics, Vol. 108, American Mathematical Society, Providence.
|
[4]
|
Linares, F. and Ponce, G. (2009) Introduction to Nonlinear Dispersive Equations.
|
[5]
|
Kato, T. (1987) On nonlinear Schrodinger Equations. Annales de l’I.H.P. Physique Théorique, 46, 113-129.
|
[6]
|
Keel, M. and Tao, T. (1998) Endpoint Strichartz Estimates. American Journal of Mathematics, 120, 955-980. http://dx.doi.org/10.1353/ajm.1998.0039
|