On the Cauchy Problem for Von Neumann-Landau Wave Equation

Abstract

In present paper we prove the local well-posedness for Von Neumann-Landau wave equation by the T. Kato’s method.

Share and Cite:

Liu, C. and Liu, M. (2014) On the Cauchy Problem for Von Neumann-Landau Wave Equation. Journal of Applied Mathematics and Physics, 2, 1224-1332. doi: 10.4236/jamp.2014.213143.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Chen, Z. (2009) Dirichlet Problems for Stationary von Neumann-Landau Wave Equations. Acta Mathematica Scientia, 29, 1225-1232.
http://dx.doi.org/10.1016/S0252-9602(09)60099-0
[2] Cazenave, T. (2003) Semilinear Schrodinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, AMS.
[3] Tao, T. (2006) Nonlinear Dispersive Equations: Local and Global Analysis. CBMS Regional Conference Series in Mathematics, Vol. 108, American Mathematical Society, Providence.
[4] Linares, F. and Ponce, G. (2009) Introduction to Nonlinear Dispersive Equations.
[5] Kato, T. (1987) On nonlinear Schrodinger Equations. Annales de l’I.H.P. Physique Théorique, 46, 113-129.
[6] Keel, M. and Tao, T. (1998) Endpoint Strichartz Estimates. American Journal of Mathematics, 120, 955-980.
http://dx.doi.org/10.1353/ajm.1998.0039

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.