[1]
|
Antoniou, I. E., & Tsompa, E. T. (2008). Statistical Analysis of Weighted Networks. Discrete Dynamics in Nature and Society, 2008, 16. http://dx.doi.org/10.1155/2008/375452
|
[2]
|
Barrat, A., Barthelemy, M., Pastor-Satorras, R., & Vespignani, A. (2004). The Architecture of Complex Weighted Networks. Proceedings of the National Academy of Sciences of the United States of America, 101, 3747-3752. http://dx.doi.org/10.1073/pnas.0400087101
|
[3]
|
Bennett, K. P., & Mangasarian, O. L. (1992) Robust Linear Programming Discrimination of Two Linearly Inseparable Sets. Optimization Methods and Software, 1, 23-34. http://dx.doi.org/10.1080/10556789208805504
|
[4]
|
Blanch, A., & Aluja, A. (2013). A Regression Tree of the Aptitudes, Personality, and Academic Performance Relationship. Personality and Individual Differences, 54, 703-708. http://dx.doi.org/10.1016/j.paid.2012.11.032
|
[5]
|
Borg, I. & Groenen, P. (2005). Modern Multidimensional Scaling: Theory and Applications (2nd ed.). New York: Springer-Verlag.
|
[6]
|
Borkin, M. A., Vo, A. A., Bylinskii, Z., Isola, P., Sunkavalli, S., Oliva, A., & Pfister, H. (2013). What Makes a Visualization Memorable? Visualization and Computer Graphics IEEE Transactions, 12, 2306-2315. http://dx.doi.org/10.1109/TVCG.2013.234
|
[7]
|
Breiman, L. (2001). Random Forests. Machine Learning, 1, 5-32. http://dx.doi.org/10.1023/A:1010933404324
|
[8]
|
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and Regression Trees. New York: Chapman & Hall.
|
[9]
|
Cortez, P., & Silva, A. M. G. (2008). Using Data Mining to Predict Secondary School Student Performance. In A. Brito, & J. Teixeira (Eds.), Proceedings of 5th Annual Future Business Technology Conference, Porto, 5-12.
|
[10]
|
Eloyan, A., Muschelli, J., Nebel, M., Liu, H., Han, F., Zhao, T., Caffo, B. et al. (2012). Automated Diagnoses of Attention Deficit Hyperactive Disorder Using Magnetic Resonance Imaging. Frontiers in Systems Neuroscience, 6. http://dx.doi.org/10.3389/fnsys.2012.00061
|
[11]
|
Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). Qgraph: Network Visualizations of Relationships in Psychometric Data. Journal of Statistical Software, 48, 1-18. http://www.jstatsoft.org/v48/i04/
|
[12]
|
Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph Drawing by Force-Directed Placement. Software: Practice and Experience, 21, 1129-1164. http://dx.doi.org/10.1002/spe.4380211102
|
[13]
|
Geurts, P., Irrthum, A., & Wehenkel, L. (2009). Supervised Learning with Decision Tree-Based Methods in Computational and Systems Biology. Molecular Biosystems, 5, 1593-1605. http://dx.doi.org/10.1039/b907946g
|
[14]
|
Golino, H. F., & Gomes, C. M. A. (2014). Four Machine Learning Methods to Predict Academic Achievement of College Students: A Comparison Study. Revista E-Psi, 4, 68-101.
|
[15]
|
Hardman, J., Paucar-Caceres, A., & Fielding, A. (2013). Predicting Students’ Progression in Higher Education by Using the Random Forest Algorithm. Systems Research and Behavioral Science, 30, 194-203. http://dx.doi.org/10.1002/sres.2130
|
[16]
|
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference and Prediction (2nd ed.). New York: Springer. http://dx.doi.org/10.1007/978-0-387-84858-7
|
[17]
|
Honarkhah, M., & Caers, J. (2010). Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling. Mathematical Geosciences, 42, 487-517. http://dx.doi.org/10.1007/s11004-010-9276-7
|
[18]
|
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R. New York: Springer. http://dx.doi.org/10.1007/978-1-4614-7138-7
|
[19]
|
Kalna, G., & Higham, D. J. (2007). A Clustering Coefficient for Weighted Networks, with Application to Gene Expression Data. Journal of AI Communications-Network Analysis in Natural Sciences and Engineering, 20, 263-271.
|
[20]
|
Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. New York: Springer. http://dx.doi.org/10.1007/978-1-4614-6849-3
|
[21]
|
Lemon, J. (2006). Plotrix: A Package in the Red Light District of R. R-News, 6, 8-12.
|
[22]
|
Liaw, A., & Wiener, M. (2012). Random Forest: Breiman and Cutler’s Random Forests for Classification and Regression. R Package Version 4.6-7.
|
[23]
|
Mangasarian, O. L., & Wolberg, W. H. (1990). Cancerdiagnosis via Linear Programming. SIAM News, 23, 1-18.
|
[24]
|
Mangasarian, O. L., Setiono, R., & Wolberg, W. H. (1990). Pattern Recognition via Linear Programming: Theory and Application to Medical Diagnosis. In T. F. Coleman, & Y. Y. Li (Eds.), Large-Scale Numerical Optimization (pp. 22-30). Philadelphia, PA: SIAM Publications.
|
[25]
|
Onnela, J. P., Saramaki, J., Kertesz, J., & Kaski, K. (2005). Intensity and Coherence of Motifs in Weighted Complex Networks. Physical Review E, 71, Article ID: 065103. http://dx.doi.org/10.1103/PhysRevE.71.065103
|
[26]
|
Quach, A. T. (2012). Interactive Random Forests Plots. All Graduate Plan B and Other Reports, Paper 134, Utah State Univesity.
|
[27]
|
R Development Core Team (2011). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org
|
[28]
|
Seni, G., & Elder, J. F. (2010). Ensemble Methods in Data Mining: Improving Accuracy through Combining Predictions. Morgan & Claypool Publishers. http://dx.doi.org/10.2200/S00240ED1V01Y200912DMK002
|
[29]
|
Skogli, E., Teicher, M. H., Andersen, P., Hovik, K., & Øie, M. (2013). ADHD in Girls and Boys—Gender Differences in Co-Existing Symptoms and Executive Function Measures. BMC Psychiatry, 13, 298. http://dx.doi.org/10.1186/1471-244X-13-298
|
[30]
|
Steincke, K. K. (1948). Farvelogtak: Ogsaaen Tilvaerelse IV. København: Fremad.
|
[31]
|
Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S (4th ed.). New York: Springer. http://dx.doi.org/10.1007/978-0-387-21706-2
|
[32]
|
Wickham, H., Caragea, D., & Cook, D. (2006). Exploring High-Dimensional Classification Boundaries. Proceedings of the 38th Symposium on the Interface of Statistics, Computing Science, and Applications—Interface 2006: Massive Data Sets and Streams, Pasadena, May 24-27 2006.
|
[33]
|
Wolberg, W. H., & Mangasarian, O. L. (1990) Multisurface Method of Pattern Separation for Medical Diagnosis Applied to Breast Cytology. Proceedings of the National Academy of Sciences of the United States of America, 87, 9193-9196.
|
[34]
|
Zhang, B., & Horvath, S. (2005). A General Framework for Weighted Gene Co-Expression Network Analysis. Statistical Applications in Geneticsand Molecular Biology, 4. http://dx.doi.org/10.2202/1544-6115.1128
|