Preparation of Microcapsules Containing Erythritol with Interfacial Polycondensation Reaction by Using the (W/O) Emulsion

Abstract

It was tried to microencapsulate erythritol as a phase change material with the interfacial polycondensation reaction method by using the (W/O) emulsion and to characterize the microcapsules prepared. In the experiment, toluene diisocyanate, diphenyl methane diisocyanate and hexamethylenediisocyanate were used to form the polyurethane shell and the effects of them on the heat storage density and the microencapsulation efficiency were investigated. Furthermore, the effect of supercooling prevention agent on the phase change behavior of erythritol was investigated. The microcapsules prepared with toluendiisocyanate monomer showed the highest heat storage density and the higher microencapsulation efficiency. Considerable supercooling phenomenon in the microcapsule was observed and prevented to a certain degree by addition of potassium dihydrogen phosphate and calcium sulfate as the supercooling prevention agent.

Share and Cite:

Hayashi, Y. , Fuchigami, K. , Taguchi, Y. and Tanaka, M. (2014) Preparation of Microcapsules Containing Erythritol with Interfacial Polycondensation Reaction by Using the (W/O) Emulsion. Journal of Encapsulation and Adsorption Sciences, 4, 132-141. doi: 10.4236/jeas.2014.44014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Kondo, T. and Tanaka, M. (1975) Microcapsules (Preparation, Properties, Application). Sankyo Shuppan, Tokyo.
[2] Kondo, T. (1967) Saishin Maikurokapseruka Gijutsu (Microencapsulation Technique). TES, Tokyo.
[3] Tanaka, M. (2008) Key Point of Preparation of Nano/Microcapsules. Techno System Publishing Co. Ltd., Tokyo.
[4] Koishi, M., Eto, K. and Higure, H. (2005) (Preparation + Utilization) Microcapsules. Kogyo Chosakai, Tokyo.
[5] Yamagishi, Y., Sugeno, T., Takeuchi, H. and Pyatenko, A.T. (1998) Themal Characteristics of Supercooles Phase Change Materials inside Microcapsules. Netsu Bussei, 12, 10-17.
http://dx.doi.org/10.2963/jjtp.12.10
[6] Yamagishi, Y., Sugeno, T., Takeuchi, H. and Pyatenko, A.T. (1998) Forced Convection Heat Transfer with Microencapsulated Phase-Change-Material Slurries. Kagaku Kogaku Ronbunshu, 24, 104-110.
http://dx.doi.org/10.1252/kakoronbunshu.24.104
[7] Yamagishi, Y., Takeuchi, H. and Pyatenko, A.T. (1999) Pyatenko, Characteristics of Microencapsulated PCM Slurry as a Heat-Transfer Fluid. AIChE Journal, 45, 696-707.
http://dx.doi.org/10.1002/aic.690450405
[8] Cho, J.S., Kwon, A. and Cho, C.G. (2002) Microencapsulation of Octadecane as a Phase-Change Material by Interfacial Polymerization in an Emulsion System. Colloid and Polymer Science, 280, 260-266.
http://dx.doi.org/10.1007/s00396-001-0603-x
[9] Zhang, X.X., Tao, X., Yick, K.I. and Wang, X.C. (2004) Structure and Thermal Stability of Microencapsulated Phase-Change Materials. Colloid and Polymer Science, 282, 330-336.
http://dx.doi.org/10.1007/s00396-003-0925-y
[10] Su, J., Ren, L. and Wang, L. (2005) Preparation and Mechanical Properties of Thermal Energy Storage Microcapsules. Colloid and Polymer Science, 284, 224-228.
http://dx.doi.org/10.1007/s00396-005-1368-4
[11] Zhaoa, C.Y. and Zhang G.H. (2011) Review on Microencapsulated Phase Change Materials (MEPCMs): Fabrication, Characterization and Applications. Renewable and Sustainable Energy Reviews, 15, 3813-3832.
http://dx.doi.org/10.1016/j.rser.2011.07.019
[12] Kumar, R., Misra, M.K., Kumar, R., Gupta, D., Khatri, P.K., Tak, B.B. and Meena, S.R. (2011) Phase Change Materials: Technology Status and Potential Defence Applications. Defence Science Journal, 6, 576-582.
http://dx.doi.org/10.14429/dsj.61.363
[13] Fortuniak, W., Slomkowski, S., Chojnowski, J., Kurjata, J., Tracz, A. and Mizerskas, U. (2013) Synthesis of a Paraffin Phase Change Material Microencapsulated in a Siloxane Polymer. Colloid and Polymer Science, 291, 725-733.
http://dx.doi.org/10.1007/s00396-012-2782-z
[14] Tang, X., Li, W., Shi, H., Wang, X., Wang, J. and Zhang, X. (2013) Fabrication, Characterization, and Supercooling Suppression of Nanoencapsulated n-Octadecane with Methyl Methacrylate-Octadecyl Methacrylate Copolymer Shell. Colloid and Polymer Science, 291, 1705-1712.
http://dx.doi.org/10.1007/s00396-013-2905-1
[15] Cheng, F., Wei, Y., Zhang, Y., Wang, F., Shen, T. and Zong, C. (2013) Preparation and Characterization of Phase-Change Material Nanocapsules with Amphiphilic Polyurethane Synthesized by 3-Allyloxy-1,2-propanediol. Journal of Applied Polymer Science, 130, 1879-1889.
http://dx.doi.org/10.1002/app.39302
[16] Wang, T., Huang, J., Zhu, P. and Xiao, J. (2013) Fabrication and Characterization of Micro-Encapsulated Sodium Phosphate Dodecahydrate with Different Crosslinked Polymer Shells. Colloid and Polymer Science, 291, 2463-2468.
http://dx.doi.org/10.1007/s00396-013-2973-2
[17] Shi, Y., Wu, Y., Zhu, L., Shentu, B. and Weng, Z. (2015) Preparation and Properties of Phase-Change Heat-Storage UV Curable Polyurethane Acrylate Coating. Journal of Applied Polymer Science, 132, 41266.
http://dx.doi.org/10.1002/app.41266
[18] Stritih, U. and Novak, P. (1996) Solar Heat Storage Wall for Building Ventilation. Renewable Energy, 8, 268-271.
http://dx.doi.org/10.1016/0960-1481(96)88860-4
[19] Tyagi, V.V. and Buddhi, D. (2008) Thermal Cycle Testing of Calcium Chloride Hexahydrate as a Possible PCM for Latent Heat Storage. Solar Energy Materials & Solar Cells, 92, 891-899.
http://dx.doi.org/10.1016/j.solmat.2008.02.021
[20] Wang, T., Huang, J., Zhu, P. and Xiao, J. (2013) Fabrication and Characterization of Micro-Encapsulated Sodium Phosphate Dodecahydrate with Different Crosslinked Polymer Shells. Colloid and Polymer Science, 291, 2463-2468.
http://dx.doi.org/10.1007/s00396-013-2973-2
[21] O’shima, E. and Tanaka, M. (1982) Coalescence and Breakup of Droplets in Suspension Polymerization of Styrene. Kagaku Kogaku Ronbunshu, 8, 86-90.
http://dx.doi.org/10.1252/kakoronbunshu.8.86
[22] Hosogai, K. and Tanaka, M. (1992) Effect of Impeller Diameter on Mean Droplet Diameter in Circular Loop Reactor. The Canadian Journal of Chemical Engineering, 70, 645-653.
http://dx.doi.org/10.1002/cjce.5450700405

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.