[1]
|
Banerjee, U.C., Sani, R.K., Azmi, W. and Soni, R. (1999) Thermostable Alkaline Protease from Bacillus brevis and Its Characterization as a Laundry Detergent Additive. Process Biochemistry, 35, 213-219.
http://dx.doi.org/10.1016/S0032-9592(99)00053-9
|
[2]
|
Gupta, R., Beg, Q.K. and Lorenz P. (2002) Bacterial Alkaline Proteases: Molecular Approaches and Industrial Applications. Applied Microbiology and Biotechnology, 59, 15-32. http://dx.doi.org/10.1007/s00253-002-0975-y
|
[3]
|
Johnvesly, B. and Naik, G.R. (2001) Studies on Production of Thermostable Alkaline Protease from Thermophilic and Alkaliphilic Bacillus sp. JB-99 in a Chemically Defined Medium. Process Biochemistry, 37, 139-144.
http://dx.doi.org/10.1016/S0032-9592(01)00191-1
|
[4]
|
Kirk, O., Borchert, T.V. and Fuglsang, C.C. (2002) Industrial Enzyme Applications. Current Opinion in Biotechnology, 13, 345-351. http://dx.doi.org/10.1016/S0958-1669(02)00328-2
|
[5]
|
Wang, Q., Hou, Y., Xu, Z., Miao, J. and Li, G.O. (2007) Optimization of Cold-Active Protease Production by the Psychrophilic Bacterium Colwellia sp. NJ341 with Response Surface Methodology. Bioresource Technology, 99, 1926-1931. http://dx.doi.org/10.1016/j.biortech.2007.03.028
|
[6]
|
Chu, I.M., Lee, C. and Li, T.S. (1992) Production and Degradation of Alkaline Protease in Batch Cultures of Bacillus subtilis ATCC 14416. Enzyme and Microbial Technology, 4, 55-61.
|
[7]
|
Sandhya, C., Sumantha, A., zakacs, G.and Pandey, A.(2005) Comparative Evaluation of Neutral Protease Production by Aspergillus oryzae in Submerged and Solid-State Fermentation. Process Biochemistry, 40, 2689-2694.
http://dx.doi.org/10.1016/j.procbio.2004.12.001
|
[8]
|
Prakasham, R.S., Rao, Ch.S. and Sarma, P.N. (2006) Green Gram Husk an Inexpensive Substrate for Alkaline Protease Production by Bacillus sp. in Solid-State Fermentation. Bioresource Technology, 97, 1449-1454.
http://dx.doi.org/10.1016/j.biortech.2005.07.015
|
[9]
|
Haaland, P.D. (1989) Statistical Problem Solving. In: Haaland, P.D., Ed., Experimental Design in Biotechnology, Marcel Dekker, New York, 1-18.
|
[10]
|
Reddy, L.V.A., Wee, Y.J., Yun, J.S. and Ryu, H.W. (2008) Optimization of Alkaline Protease Production by Batch Culture of Bacillus sp. RKY3 through Plackett-Burman and Response Surface Methodological Approaches. Bioresource Technology, 99, 2242-2249. http://dx.doi.org/10.1016/j.biortech.2007.05.006
|
[11]
|
Bhunia, B. and Dey, A. (2012) Statistical Approach for Optimization of Physicochemical Requirements on Alkaline Protease Production from Bacillus licheniformis NCIM 2042. Enzyme Research, 2012, Article ID: 905804.
http://dx.doi.org/10.1155/2012/905804
|
[12]
|
Kumar, R.S., Ananthan, G. and Prabhu, A.S. (2014) Optimization of Medium Composition for Alkaline Protease Production by Marinobacter sp. GACAS9 Using Response Surface Methodology—A Statistical Approach. Biocatalysis and Agricultural Biotechnology, 3, 191-197.
|
[13]
|
Haddar, A., Bougatef, A., Agrebi, R., Sellami-Kamoun, A. and Nasri, M. (2009) A Novel Surfactant-Stable Alkaline Serine-Protease from a Newly Isolated Bacillus mojavensis A21. Purification and Characterization. Process Biochemistry, 44, 29-35. http://dx.doi.org/10.1016/j.procbio.2008.09.003
|
[14]
|
Haddar, A., Agrebi, R., Bougatef, A., Hmidet, N., Sellami-Kamoun, A. and Nasri, M. (2009) Two Detergent Stable Alkaline Serine-Proteases from Bacillus mojavensis A21: Purification, Characterization and Potential Application as a Laundry Detergent Additive. Bioresource Technology, 100, 3366-3373.
http://dx.doi.org/10.1016/j.biortech.2009.01.061
|
[15]
|
Hmidet, N., Balti, R., Nasri,R., Sila, A.,Bougatef, A. and Nasri, M. (2011) Improvement of Functional Propreties and Antioxidant Activities of Cuttlefish (Sepia officinalis) Muscle Proteins Hydrolyzed by Bacillus mojavensis A21 Proteases. Food Research International, 44, 2703-2711. http://dx.doi.org/10.1016/j.foodres.2011.05.023
|
[16]
|
Younes, I., Ghorbel-Bellaaj, O., Nasri, R., Chaabouni, M., Rinaudo, M.and Nasri, M. (2012) Chitin and Chitosan Preparation from Shrimp Shells Using Optimized Enzymatic Deproteinization. Process Biochemistry, 47, 2032-2039.
http://dx.doi.org/10.1016/j.procbio.2012.07.017
|
[17]
|
Nasri, R., Chataigné, G., Bougatef, A., Karra Chaabouni, M., Dhulser, P., Nasri, M. and Nedjar-Arroume, N. (2013) Novel Angiotensin I-Converting Enzyme Inhibitory Peptides from Enzymatic Hydrolysates of Goby (Zosterisessor ophiocephalus) Muscle Proteins. Journal of Proteomics, 91, 444-452. http://dx.doi.org/10.1016/j.jprot.2013.07.029
|
[18]
|
Haddar, A., Fakhfakh-Zouari, N., Hmidet, N., Frikha, F., Nasri, N. and Sellami Kamoun, A. (2010) Low-Cost Fermentation Medium for Alkaline Protease Production by Bacillus mojavensis A21 Using Hulled Grain of Wheat and Sardinella Peptone. Journal of Bioscience Bioengineering, 110, 288-294.
http://dx.doi.org/10.1016/j.jbiosc.2010.03.015
|
[19]
|
Souissi, N., Bougatef, A., Triki-Ellouz, Y. and Nasri, M. (2007) Biochemical and Functional Properties of Sardinella (Sardinella aurita) By-Product Hydrolysates. Food Technology and Biotechnology, 45, 187-194.
|
[20]
|
Triki-Ellouz, Y., Bayoudh, A., Kammoun, S., Gharsallah, N. and Nasri, M. (2001) Production of Protease by Bacillus subtilis Grown on Sardinelle Heads and Viscera Flour. Bioresource Technology, 80, 49-51.
http://dx.doi.org/10.1016/S0960-8524(01)00057-8
|
[21]
|
Fakhfakh, N., Ktari, N., Haddar, A., Hamza Mnif, I., Dahmen, I. and Nasri, M. (2011) Total Solubilisation of the Chicken Feathers by Fermentation with a Keratinolytic Bacterium, Bacillus pumilus A1, and the Production of Protein Hydrolysate with High Antioxidative Activity. Process Biochemistry, 46, 1731-1737.
http://dx.doi.org/10.1016/j.procbio.2011.05.023
|
[22]
|
Miller, J.H. (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
|
[23]
|
Kembhavi, A.A., Kulkarni, A. and Pant, A.A. (1932) Salt-Tolerant and Thermostable Alkaline Protease from Bacillus subtilis NCIM No 64. Applied Biochemistry and Biotechnology, 38, 83-92. http://dx.doi.org/10.1007/BF02916414
|
[24]
|
Plackett, R.L. and Burman, J.P. (1946) The Design of Optimum Multifactorial Experiments. Biometrika, 33, 305-325.
http://dx.doi.org/10.1093/biomet/33.4.305
|
[25]
|
Box, G.E.P., Hunter, W.G. and Hunter, J.S. (1978) Statistics for Experiments: An Introduction to Design Data Analysis and Model Building. John Wiley, New York.
|
[26]
|
Khuri, A.I. and Cornell, J.A. (1987) Response Surfaces: Design and Analysis. Marcel Decker Inc., New York.
|
[27]
|
Li, X., Xu, T., Ma, X., Guo, K., Kai, L., Zhao, Y., Jia, X. and Ma, Y. (2008) Optimization of Culture Conditions for Production of Cis-Epoxysuccinic Acid Hydrolase Using Response Surface Methodology. Bioresource Technology, 99, 5391-5396. http://dx.doi.org/10.1016/j.biortech.2007.11.017
|
[28]
|
Ewers, E. (1965) Determination for Starch by Extraction and Dispersion with Hydrochloric Acid. International Organisation for Standardization (ISO/TC 93/WGL).
|
[29]
|
Joo, H.S., Kumar, C.G., Park, G.C., Kim, K.T., Paik, S.R. and Chang, C.S. (2002) Optimization of the Production of an Extracellular Alkaline Protease from Bacillus horikoshii. Process Biochemistry, 38, 155-159.
http://dx.doi.org/10.1016/S0032-9592(02)00061-4
|
[30]
|
Sellami-Kamoun, A., Ghorbel-Frikha, B., Haddar, A. and Nasri, M. (2011) Enhanced Bacillus cereus BG1 Protease Production by the Use of Sardinelle (Sardinella aurita) Powder. Annals of Microbiology, 61, 273-280.
http://dx.doi.org/10.1007/s13213-010-0134-0
|
[31]
|
Hanlon, G.W., Hodges, N.A. and Russel, A.D. (1982) The Influence of Glucose, Ammonium and Magnesium Availability on the Production of Protease and Bacitracin by Bacillus licheniformis. Journal of Genetic and Microbiology, 128, 845-851.
|
[32]
|
Puri, S., Khali, O. and Gupta, R. (2002) Optimization of Alkaline Protease Production from Bacillus sp. by Response Surface Methodology. Current Microbiology, 44, 286-290. http://dx.doi.org/10.1007/s00284-001-0006-8
|
[33]
|
Tari, C., Genckal, H. and Tokatli, F. (2006) Optimization of a Growth Medium Using a Statistical Approach for the Production of an Alkaline Protease from a Newly Isolate Bacillus sp. L21. Process Biochemistry, 41, 659-665.
|
[34]
|
Oskouie, S.F.G., Tabandeh, F., Yakhchali, B. and Eftekhar, F. (2008) Response Surface Optimization of Medium Composition for Alkaline Protease Production by Bacillus clausii. Biochemical Engineering Journal, 39, 37-42.
http://dx.doi.org/10.1016/j.bej.2007.08.016
|
[35]
|
Agrebi, R., Haddar, A, Hajji, M., Frikha, F., Manni, L., Jellouli, K. and Nasri, M. (2009) Fibrinolytic Enzymes from a Newly Isolated Marine Bacterium Bacillus subtilis A26: Characterization and Statistical Media Optimization. Canadian Journal of Microbiology, 55, 1049-1061. http://dx.doi.org/10.1139/W09-05
|