The Influence of Zn2+ Ions Substitution on the Microstructure and Transport Properties of Mn-Zn Nanoferrites

Abstract

The effect of Zn2+ ions on the microstructure and electrical properties of Mn1-xZnxFe2O4 (0.0 ≤ x ≤ 0.5 in steps of 0.1) through a solid state reaction has been investigated. The structural properties have been investigated using X-ray diffraction (XRD) technique. The XRD analysis confirms that all samples are in a single-phase cubic spinel structure. The experimental lattice parameter (aexp) was decreased with increasing Zn2+ ions substitution due to the smaller ionic radius of zinc content. The crystallite size (t) of samples was estimated by Scherrer’s formula and found in the range (90 - 115 nm). Dc electrical resistivity and Seebeck voltage coefficients were measured as a function of temperature using the two probe methods. The temperature variation of resistivity exhibits two breaks, each break referring to a change in the activation energy. The Curie temperature estimated from dc resistivity measurement decreases with increasing Zn2+ ions. Seebeck voltage coefficient measurements reveal n-type conduction for all samples.

Share and Cite:

Ahmed, M. , Rady, K. , El-Shokrofy, K. , Arais, A. and Shams, M. (2014) The Influence of Zn2+ Ions Substitution on the Microstructure and Transport Properties of Mn-Zn Nanoferrites. Materials Sciences and Applications, 5, 932-942. doi: 10.4236/msa.2014.513095.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Arulmurugan, R., Jeyadevan, B., Vaidyanathan, G. and Sendhilnathan, S. (2005) Effect of Zinc Substitution on Co-Zn and Mn-Zn Ferrite Nanoparticles Prepared by Co-Precipitation. Journal of Magnetism and Magnetic Materials, 288, 470-477.
http://dx.doi.org/10.1016/j.jmmm.2004.09.138
[2] Fujioka, H., Ikeda, T., Ono, K., Ito, S. and Oshima, M. (2002) Characteristics of InSb Grown on Single Crystalline Mn-Zn Ferrite Substrates. Journal of Crystal Growth, 241, 309-312.
http://dx.doi.org/10.1016/S0022-0248(02)01311-8
[3] Sathishkumar, G., Venkataraju, C. and Sivakumar, K. (2010) Synthesis, Structural and Dielectric Studies of Nickel Substituted Cobalt-Zinc Ferrite. Materials Sciences and Applications, 1, 19-24.
http://dx.doi.org/10.4236/msa.2010.11004
[4] Taylor, J.A.T., Reczek, S.T. and Rosen, A. (1995) Soft Ferrite Processing. American Ceramic Society Bulletin, 74, 91.
[5] Wang, J., Zeng, C. Peng, Z. and Chen, Q. (2004) Synthesis and Magnetic Properties of Zn1-xMnxFe2O4 Nanoparticles. Physica B: Condensed Matter, 349, 124-128. http://dx.doi.org/10.1016/j.physb.2004.02.014
[6] Ott, G., Wrba, J. and Lucke, R. (2003) Recent Developments of Mn-Zn Ferrites for High Permeability Applications. Journal of Magnetism and Magnetic Materials, 254-255, 535-537.
http://dx.doi.org/10.1016/S0304-8853(02)00961-7
[7] Yu, Z., Sun, K., Li, L., Liu, Y., Lan, Z. and Zhang, H. (2008) Influences of Bi2O3 on Microstructure and Magnetic Properties of MnZn Ferrite. Journal of Magnetism and Magnetic Materials, 320, 919-923.
http://dx.doi.org/10.1016/j.jmmm.2007.09.008
[8] Ghazanfar, U., Siddiqi, S.A. and Abbas, G. (2005) Structural Analysis of the Mn-Zn Ferrite, Using XRD Technique. Materials Science and Engineering B, 118, 84-86.
http://dx.doi.org/10.1016/j.mseb.2004.12.018
[9] Hessien, M.M., Rashad, M.M., El-Barawy, K. and Ibrahim, I.A. (2008) Influence of Manganese Substitution and Annealing Temperature on the Formation, Microstructure and Magnetic Properties of Mn-Zn Ferrites. Journal of Magnetism and Magnetic Materials, 320, 1615-1621.
http://dx.doi.org/10.1016/j.jmmm.2008.01.025
[10] Kim, S.J., Hyun, S.W., Kim, C.S. and Kim, H.J. (2014) Thermal Variation of MgZn Nanoferrites for Magnetic Hyperthermia. Journal of the Korean Physical Society, 65, 553-556.
http://dx.doi.org/10.3938/jkps.65.553
[11] Akther Hossaina, A.K.M., Mahmuda, S.T., Sekib, M., Kawaib, T. and Tabata, H. (2007) Structural, Electrical Transport, and Magnetic Properties of Ni1-xZnxFe2O4. Journal of Magnetism and Magnetic Materials, 312, 210-219.
http://dx.doi.org/10.1016/j.jmmm.2006.09.030
[12] Zaki, H.M. (2009) The Influence of Zn Ions Substitution on the Transport Properties of Mg-Ferrite. Physica B: Condensed Matter, 404, 3356-3362.
http://dx.doi.org/10.1016/j.physb.2009.05.012
[13] Lv, W.Z., Liu, B., Luo, Z.K., Ren, X.Z. and Zhang, P.X. (2008) XRD Studies on the Nanosized Copper Ferrite Powders Synthesized by Sonochemical Method. Journal of Alloys and Compounds, 465, 261-264.
http://dx.doi.org/10.1016/j.jallcom.2007.10.049
[14] Zhang, C.F., Zhong, X.C., Yu, H.Y., Liu, Z.W. and Zeng, D.C. (2009) Effects of Cobalt Doping on the Microstructure and Magnetic Properties of Mn-Zn Ferrites Prepared by the Co-Precipitation Method. Physica B: Condensed Matter, 404, 2327-2331.
http://dx.doi.org/10.1016/j.physb.2008.12.044
[15] Kigery, W.D., Bowen, H.K. and Uhlmann, D.R. (1975) Introduction of Ceramics. John Wiley & Sons, New York, 458.
[16] Nalbandian, L., Delimitis, A., Zaspalis, V.T., Deliyanni, E.A., Bakoyannakis, D.N. and Peleka, E.N. (2008) Hydrothermally Prepared Nanocrystalline Mn-Zn Ferrites: Synthesis and Characterization. Microporous and Mesoporous Materials, 114, 465-473.
http://dx.doi.org/10.1016/j.micromeso.2008.01.034
[17] Rath, C., Anand, S., Das, R.P., Sahu, K.K., Kulkarni, S.D., Date, S.K. and Mishra, N.C. (2002) Dependence on Cation Distribution of Particle Size, Lattice Parameter, and Magnetic Properties in Nanosize Mn-Zn Ferrite. Journal of Applied Physics, 91, 2211-2215.
http://dx.doi.org/10.1063/1.1432474
[18] Shannon, R.D. (1976) Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32, 751-767.
http://dx.doi.org/10.1107/S0567739476001551
[19] Heiba, Z.K., Mohamed, M.B., Ahmed, M.A., Moussa, M.A.A. and Hamdeh, H.H. (2014) Cation Distribution and Dielectric Properties of Nanocrystalline Gallium Substituted Nickel Ferrite. Journal of Alloys and Compounds, 586, 773781.
http://dx.doi.org/10.1016/j.jallcom.2013.10.137
[20] Eltabey, M.M., Ali, I.A., Hassan, H.E. and Comsan, M.N.H. (2011) Effect of γ-Rays Irradiation on the Structure and Magnetic Properties of Mg-Cu-Zn Ferrites. Journal of Materials Science, 46, 2294-2299.
http://dx.doi.org/10.1007/s10853-010-5071-6
[21] Ahmed, M.A. and Okasha, N. (2009) Role of Cu2+ Concentration on the Structure and Transport Properties of Cr-Zn Ferrites. Journal of Magnetism and Magnetic Materials, 321, 3436-3441.
http://dx.doi.org/10.1016/j.jmmm.2009.06.041
[22] Hemeda, O.M. (2004) IR Spectral Studies of Co0.6Zn0.4MnxFe2-xO4 Ferrites. Journal of Magnetism and Magnetic Materials, 281, 36-41.
http://dx.doi.org/10.1016/j.jmmm.2004.01.100
[23] Ahmed, M.A., Ateia, E. and El-Dek, S.I. (2002) Spectroscopic Analysis of Ferrite Doped with Different Rare Earth Elements. Vibrational Spectroscopy, 30, 69-75.
http://dx.doi.org/10.1016/S0924-2031(02)00040-1
[24] Satter, A.A., El-Sayed, H.M. and El-Tabey, M.M. (2005) The Effect of Al-Substitution on Structure and Electrical Properties of Mn-Ni-Zn Ferrites. Journal of Materials Science, 40, 4873-487.
http://dx.doi.org/10.1007/s10853-005-3884-5
[25] Murugesan, M., Ishigaki, T., Kuwano, H., Chen, M., Liu, R.S. and Nachimuthu, P. (1999) Enhancement of Critical Pr Ion Concentration(xcr) in (La1-xPrx)Ba2Cu3Oz. Journal of Applied Physics, 86, 6985-6992.
http://dx.doi.org/10.1063/1.371783
[26] Abo-Arais, A. and Dawoud, M.A.T. (2005) New Phases of YBaCuGeO Superconductors Identified from X-Ray Diffraction and Infra-Red Absorption Measurements. Turkish Journal of Physics, 29, 33-41.
[27] Solyman, S. (2006) Transport Properties of La-Doped Mn-Zn Ferrite. Ceramics International, 32, 755-760.
http://dx.doi.org/10.1016/j.ceramint.2005.05.018
[28] Ahmed, M.A., Ateia, E., Salah, L.M. and El-Gamal, A.A. (2005) Structural and Electrical Studies on La3+ Substituted Ni-Zn Ferrites. Materials Chemistry and Physics, 92, 310-321.
http://dx.doi.org/10.1016/j.matchemphys.2004.05.049

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.