Investigation of the Temperature Dependence of the Oscillation of the Magnetic Susceptibility in Semiconductors

Abstract

The temperature dependence of the magnetic susceptibility oscillations semiconductors was considered in a quantizing magnetic field. With the help of mathematical modeling of the thermal broadening of the energy levels, the temperature dependence of the de Haas-van Alphen effect in quantizing magnetic field was investigated. The influence of temperature on the de Haas-van Alphen with the help of free energy of electrons  in semiconductors was determined. Theoretical results of the mathematical simulation were compared with experimental data for bismuth. Using the proposed model of the low-temperature , high-temperature oscillation magnetic susceptibility in semiconductors was calculated.

Share and Cite:

Gulyamov, G. , Erkaboev, U. and Sharibaev, N. (2014) Investigation of the Temperature Dependence of the Oscillation of the Magnetic Susceptibility in Semiconductors. Journal of Modern Physics, 5, 1974-1979. doi: 10.4236/jmp.2014.517192.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Tsidilkovsky, I.M. (1972) Electrons and Holes in Semiconductors. Nauka, Moscow, Chapter 6, 526.
[2] Schoenberg, D. (1986) Magnetic Oscillations in Metals. Wiley, New York, Chapter 1, 25.
[3] Bagraev, N.T., Brilinskaya, E.S., Gets, D.S., Klyachkin, L.E., Malyarenko, A.M. and Novels, V.V. (2011) Fizika i Tekhnika Poluprovodnikov, 45, 1503-1508.
[4] Bagraev, N.T., Brilinskaya, E.S., Danilovsky, E.Yu., Klyachkin, L.E., Malyarenko, A.M. and Romanov, V.V. (2012) Fizika i Tekhnika Poluprovodnikov, 46, 90-95.
[5] Gulyamov, G. and Sharibaev, N.Yu. (2011) Fizika i Tekhnika Poluprovodnikov, 45, 178-182.
[6] Gulyamov, G., Sharibaev, N.Yu. and Erkaboev, U.I. (2012) Fyzicheckaya Injeneriya Poverkhnosti, 10, 366-370.
[7] Gulyamov, G., Karimov, I.N., Sharibaev, N.Yu. and Erkaboev, U.I. (2010) Uzbek Journal of Physics, 12, 143-146.
[8] Gulyamov, G., Sharibaev N.Y. and Erkaboev, U.I. (2013) World Journal of Condensed Matter Physics, 3, 216-220.
http://dx.doi.org/10.4236/wjcmp.2013.34036
[9] Gulyamov, G., Erkaboev, U.I. and Sharibaev, N.Y. (2013) Physical Surface Engineering, 11, 289-292.
[10] Gulyamov, G., Erkaboev, U.I. and Sharibaev, N.Y. (2014) Journal of Modern Physics, 5, 680-685.
http://dx.doi.org/10.4236/jmp.2014.58079
[11] Gulyamov, G., Erkabaev, U.I. and Sharibaev, N.Yu. (2014) Semiconductors, 48, 1287-1292.
[12] Gulyamov, G., Sharibaev, N.Y. and Erkaboev, U.I. (2014) Fyzicheckaya Injeneriya Poverkhnosti, 11, 9-13.
[13] Landau, L.D. and Lifshitz, E.M. (1976) Statistical Physics. Nauka, Moscow, Part 1, Chapter 3, 109.
[14] Abrikosov, A.A. (1987) Fundamentals of the Theory of Metals. Nauka, Moscow, Chapter 10, 156.
[15] Anselm, A.I. (1978) Introduction to the Theory of Semiconductors. Nauka, Moscow, Chapter 6, 367.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.