[1]
|
Environmental Protection Agency (2011) National Archives and Records Administration: Federal Register. 9303.
|
[2]
|
Environmental Protection Agency, 40 CFR Parts 60 and 63[EPA-HQ-OAR-2009-0234; EPA-HQ-OAR-2011-0044, FRL- 9148-5]RIN 2060-AP52 (2014) National Emission Standards for Hazardous Air Pollutants from Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial- Commercial-Institutional, and Small Industrial-Commercial-Institutional Steam Generating Units.
http://www.epa.gov/airquality/powerplanttoxics/pdfs/proposal.pdf
|
[3]
|
Environmental Protection Agency (2012) In 40 CFR Parts 60 and 63; Federal Register. Environmental Protection Agency, Washington DC, 71323.
|
[4]
|
Poulston, S., Granite, E.J., Pennline, H.W., Myers, C.R., Stanko, D.P., Hamilton, H., Rowsell, L., Smith, A.W.J., Ilkenhans, T. and Chu, W. (2007) Metal Sorbents for High Temperature Mercury Capture from Fuel Gas. Fuel, 86, 2201-2203. http://dx.doi.org/10.1016/j.fuel.2007.05.015
|
[5]
|
Wendt, J.O.L. and Lee, S.J. (2010) High-Temperature Sorbents for Hg, Cd, Pb, and Other Trace Metals: Mechanisms and Applications. Fuel, 89, 894-903. http://dx.doi.org/10.1016/j.fuel.2009.01.028
|
[6]
|
Granite, E.J., Pennline, H.W. and Hargis, R.A. (2000) Novel Sorbents for Mercury Removal from Flue Gas. Industrial & Engineering Chemistry Research, 39, 1020-1029. http://dx.doi.org/10.1021/ie990758v
|
[7]
|
Reed, G.P., Ergüdenler, A., Grace, J.R., Watkinson, A.P., Herod, A.A., Dugwell, D. and Kandiyoti, R. (2001) Control of Gasifier Mercury Emissions in a Hot Gas Filter: The Effect of Temperature. Fuel, 80, 623-634.
http://dx.doi.org/10.1016/S0016-2361(00)00148-4
|
[8]
|
Wu, S.J., Uddin, Md.A. and Sasaoka, E. (2006) Characteristics of the Removal of Mercury Vapor in Coal Derived Fuel Gas over Iron Oxide Sorbents. Fuel, 85, 213-218. http://dx.doi.org/10.1016/j.fuel.2005.01.020
|
[9]
|
Zhang, H., Zhao, J., Fang, Y., Huang, J. and Want, Y. (2012) Catalytic Oxidation and Stabilized Adsorption of Elemen- tal Mercury from Coal-Derived Fuel Gas. Energy & Fuels, 26, 1629-1637. http://dx.doi.org/10.1021/ef201453d
|
[10]
|
McNamara, J.D. and Wagner, N.J. (1996) Process Effects on Activated Carbon Performance and Analytical Methods Used for Low Level Mercury Removal in Natural Gas Applications. Gas Separation and Purification, 10, 137-140.
http://dx.doi.org/10.1016/0950-4214(96)00005-9
|
[11]
|
Granite, E.J., Myers, C.R., King, W.P., Stanko, D.C. and Pennline, H.W. (2006) Sorbents for Mercury Capture from Fuel Gas with Application to Gasification Systems. Industrial & Engineering Chemistry Research, 45, 4844-4848.
http://dx.doi.org/10.1021/ie060456a
|
[12]
|
Poulston, S., Granite, E.J., Pennline, H.W., Hamilton, H. and Smith, A.W.J. (2011) Palladium Based Sorbents for High Temperature Arsine Removal from Fuel Gas. Fuel, 90, 3118-3121. http://dx.doi.org/10.1016/j.fuel.2011.05.012
|
[13]
|
Quinn, R., Mebrahtu, T., Dahl, T.A., Lucrezi, F.A. and Toseland, B.A. (2004) The Role of Arsine in the Deactivation of Methanol Synthesis Catalysts. Applied Catalysis A: General, 264, 103-109.
http://dx.doi.org/10.1016/j.apcata.2003.12.034
|
[14]
|
Coade, R. and Coldham, D. (2006) The Interaction of Mercury and Aluminium in Heat Exchangers in a Natural Gas Plants. International Journal of Pressure Vessels and Piping, 83, 336-342.
http://dx.doi.org/10.1016/j.ijpvp.2006.02.022
|
[15]
|
Nichols, H. and Rostoker, W. (1961) On the Mechanism of Crack Initiation in Embrittlement by Liquid Metals. Acta Metallurgica, 9, 504-509. http://dx.doi.org/10.1016/0001-6160(61)90145-6
|
[16]
|
Cayan, F.N., Zhi, M., Pakalapati, S.R., Celik, I., Wu, N. and Gemmen, R. (2008) Effects of Coal Syngas Impurities on Anodes of Solid Oxide Fuel Cells. Journal of Power Sources, 185, 595-602.
http://dx.doi.org/10.1016/j.jpowsour.2008.06.058
|
[17]
|
Baltrus, J.P., Granite, E.J., Pennline, H.W., Stanko, D., Hamilton, H., Rowsell, L., Poulston, S., Smith, A. and Chu, W. (2010) Surface Characterization of Palladium-Alumina Sorbents for High-Temperature Capture of Mercury and Arsenic from Fuel Gas. Fuel, 89, 1323-1325. http://dx.doi.org/10.1016/j.fuel.2009.09.030
|
[18]
|
Cost and Performance Baseline for Fossil Energy Plants. Vol. 1, DOE/NETL-2007/1281, May 2007.
|
[19]
|
Preliminary Feasibility Analysis of RTI Warm Gas Cleanup (WGCU) Technology, Nexant, June 2007.
http://www.canadiancleanpowercoalition.com/files/7112/7723/6492/CCS8%20-%20090520_Nexant_RTI_Rp_Public.pdf
|
[20]
|
NETL Factsheet, RECOVERY ACT: Scale-Up of High-Temperature Syngas Cleanup Technology.
http://www.netl.doe.gov/publications/factsheets/project/FE0000489.pdf
|
[21]
|
Granite, E.J., Pennline, H.W., Rupp, E.C., Baltrus, J.P., Stanko, D.C., Howard, B.H., Guenther, C. and Tennant, J.—NETL; Hamilton, H., Poulston, S., Rowsell, L., Chu, W. and Smith, A.—Johnson Matthey; Wu, T., Datta, S., Lambrecht, B. and Wheeldon, J.—Southern Company (2011) Palladium Sorbents for High Temperature Capture of Mercury, Arsenic, Selenium and Phosphorus from Fuel Gas. Proceedings of the West Virginia University Seminar, Morgantown, 28 October 2011.
|
[22]
|
Cost and Performance Baseline for Fossil Energy Plants, Vol. 1, Bituminous Coal and Natural Gas to Electricity. DOE/NETL-2010/1397, September 2013.
http://www.netl.doe.gov/File%20Library/Research/Energy%20Analysis/OE/BitBase_FinRep_Rev2a-3_20130919_1.pdf
|