Thermodynamics of the Second Dissociation Constants (pK2) of Piperazine-N,N′-bis-2-hydroxypropanesulfonic Acid (POPSO Sesquisodium Salt) and Associated Thermodynamic Functions from (278.15 to 328.15) K

Abstract

The second acidic dissociation constants of protonated piperazine-N,N′-bis-2-hydroxypropane-sulfonic acid (POPSO sesquisodium salt) have been determined at 12 different temperatures from (278.15 to 328.15) K including 310.15 K. Electromotive-force measurement technique was used employing hydrogen-silver chloride cells without liquid junction. The results of pK2 are given by the equation: pK2 = -1041.77/T + 51.0459 - 6.97646lnT. The uncertainty of the fit is ±0.0008. At 289.15 K, pK2 = 7.8029; whereas, at 310.15 K (body temperature), pK2 = 7.6862. Thus, the buffer solutions of POPSO and its sodium salt are useful for pH control in the physiological pH region of (7.0 to 8.5). The changes of Gibbs free energy (G°), enthalpy (H°), entropy (S°) and heat capacity Cp° were computed from the temperature derivative of the pK2 for the dissociation of the zwitterionic acid POPSO±-3 = POPSO-4 + H+ in the standard state. At 298.15 K, these results are compared with those of similar components, which are the derivatives of the parent compounds TAURINE, PIPERAZINE and MORPHOLINE.

Share and Cite:

Roy, R. , Roy, L. , Hundley, K. , Wehmeyer, T. and Tebbe, L. (2014) Thermodynamics of the Second Dissociation Constants (pK2) of Piperazine-N,N′-bis-2-hydroxypropanesulfonic Acid (POPSO Sesquisodium Salt) and Associated Thermodynamic Functions from (278.15 to 328.15) K. Journal of Biophysical Chemistry, 5, 143-151. doi: 10.4236/jbpc.2014.54016.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Ferguson, W.J., Braunschweiger, K.L., Braunschweiger, W.R., Smith, J.R., McCormick, J.J., Wasman, C.C., Jarvis, N.P., Bell, D.H. and Good, N.E. (1980) Hydrogen Ion Buffers for Biological Research. Analytical Chemistry, 104, 300-310.
[2] Roy, R.N., Roy, L.N., Hundley, K.E., Dinga, J.J., Medcalf, M.R., Tebbe, L.S., Parmar, R.R. and Veliz, J.A. (2014) Acid Dissociation Constants and Related Thermodynamic Functions of Protonated 2, 2-Bis(hydroxymethyl)-2, 2′,2′′- Nitrilotriethanol (BIS-TRIS) from (278.15 to 328.15) K. Journal of Biophysical Chemistry, 5, 118-124.
http://dx.doi.org/10.4236/jbpc.2014.53013
[3] Roy, R.N., Roy, L.N., Dinga, J.J., Medcalf, M.R., Hundley, K.E., Hines, E.B., Summers, C.B., Tebbe, L.S. and Veliz, J.A. (2014) Dissociation Constant of N-(2-Acetamido)-iminodiacetic Acid Monosodium (ADA) from (278.15 to 328.15) K. Open Journal of Physical Chemistry, 4, 71-79.
http://dx.doi.org/10.4236/ojpc.2014.42011
[4] Roy, R.N., Roy, L.N., Dinga, J.J., Medcalf, M.R., Hundley, K.E., Hines, E.B., Parmar, R.R., Veliz, J.A., Summers, C.B. and Tebbe, L.S. (2014) Thermodynamics of the Second Stage Dissociation Step (pK2) of Buffer Monosodium 1,4-Piperazinediethanesulfonate from (278.15 to 328.15) K. Journal of Biophysical Chemistry, 5, 91-98.
http://dx.doi.org/10.4236/jbpc.2014.53010
[5] Hetzer, H.B., Robinson, R.A. and Bates, R.G. (1968) Dissociation Constants of Piperazinium Ion and Related Thermodynamic Quantities from 0 to 50?C. The Journal of Physical Chemistry, 72, 2081-2086.
http://dx.doi.org/10.1021/j100852a034
[6] Thiel, T., Liczkowski, L. and Bissen, S.T. (1998) New Zwitterionic Butanesulfonic Acids That Extend the Alkaline Range of Four Families of Good Buffers: Evaluation for Use in Biological Systems. Journal of Biochemical and Biophysical Methods, 37, 117-129.
http://dx.doi.org/10.1016/S0165-022X(98)00022-0
[7] Good, N.E., Winget, G.D., Winter, W., et al. (1966) Hydrogen Ion Buffers for Biological Research. Biochemistry Journal, 5, 467-477.
http://dx.doi.org/10.1021/bi00866a011
[8] Goldberg, R.N., Kishore, N. and Lennen, R.M. (2002) Thermodynamic Quantities for the Ionization Reactions of Buffers. Journal of Physical Chemistry Reference Data, 31, 231-370.
http://dx.doi.org/10.1063/1.1416902
[9] Roy, R.N., Roy, L.N., Simon, A.N., Moore, A.C., Seing, L.A., Richards, S.J., Craig, H.D., Childers, B.A., Tabor, B.J., Himes, C.A. and Viele, K.E. (2004) Thermodynamics of the Second Dissociation Constant of N-Tris[hydroxymethyl]- 4-aminobutanesulfonic Acid (TABS) from 5 to 55?C. Journal of Solution Chemistry, 33, 353-364.
http://dx.doi.org/10.1023/B:JOSL.0000036306.61494.e2
[10] Roy, R.N., Carlsten, A., Niederschmidt, J., Good, W.S., Rook, J.M., Brewe, C., Kilker, A.J., Roy, L.N. and Kuhler, K.M. (1997) Buffers for the Physiological pH Range: Thermodynamic Constants of Substituted Aminopropanesulfonic Acids (AMPSO) and (DIPSO) from 5?C to 55?C. Journal of Solution Chemistry, 26, 309-317.
http://dx.doi.org/10.1007/BF02768001
[11] Roy, R.N., Grant, J.G., Roy, L.N., Cummins, M.P., Tabor III, B.J., Richards, S.J., et al. (2002) Second Dissociation Constants of N-[4-Morpholino]butanesulfonic Acid and N-[2-Hydroxymethyl]piperazine-N’-4-butanesulfonic Acid from 5 to 55?C. Journal of Solution Chemistry, 31, 861-872.
http://dx.doi.org/10.1023/A:1021459621374
[12] Roy, L.N., Roy, R.N., Denton, C.E., LeNoue, S.R., Roy, C.N., Ashkenazi, S., et al. (2006) Second Dissociation Constant of Bis-[(2-hydroxyethyl)amino]acetic Acid (BICINE) and pH of Its Buffer Solutions from 5 to 55?C. Journal of Solution Chemistry, 35, 605-624.
http://dx.doi.org/10.1007/s10953-005-9009-6
[13] Ives, D.J.G. and Moseley, P.G.N. (1975) Derivation of Thermodynamic Functions of Ionization from Acidic Dissociation Constants. Journal Chemical Society, 72, 1132-1143.
[14] Please, N.W. (1954) Estimation of the Variances of the Data Used in the Calculation of Dissociation Constants. Biochemistry Journal, 56, 196-201.
[15] Azab, H.A. and Aboul Nour, K.M. (1999) Medium Effect on the Apparent Second Stage Dissociation Constants of Some Zwitterioni Buffers for Physiological Research in Various Water + Organic Solvent Mixtures. Journal of Chemical and Engineering Data, 44, 678-683.
http://dx.doi.org/10.1021/je980313y
[16] Alies, B., Pradines, V., Llorens-Alliot, I., Sayen, S., Guillon, E., Hureau, C. and Faller, P. (2010) Zinc(II) Modulates Specifically Amyloid Formation and Structure in Model Peptides. Journal of Biological Inorganic Chemistry, 16, 333- 340.
http://dx.doi.org/10.1007/s00775-010-0729-8
[17] Vasconcelos, M., Teresa, S.D., Almeida, C. and Marisa, R. (1998) Electrochemical Study of Proton Ionization, Copper (II) Complexation and Surfactant Properties of Piperazine-N-N-bis[2-hydroxypropanesulfonic acid] pH Buffer: Comparison with Other N-Substituted Aminosulfonic Acids pH Buffers. Analytica Chimica Acta, 369, 115-122.
http://dx.doi.org/10.1016/S0003-2670(98)00239-6
[18] Roy, R.N., Roy, L.N., Denton, C., LeNoue, S., Fuge, M., Dunseth, C., Roy, C., Bwashi, A., Wollen, J. and DeArmon, S. (2009) Buffer Standards for the Physiological pH of 3-[(1,1-Dimethyl-2-hydroxymethyl)amino]-2-hydroxypropane- sulfonic Acid (AMPSO) from (278.15 to 328.15) K. Journal of Chemical Engineering Data, 54, 428-435.
http://dx.doi.org/10.1021/je8004563
[19] Vega, C. and Bates, R. (1976) Buffers for the Physiological pH Range: Thermodynamic Constants of Four Substituted Aminoethansul-Fonic Acids from 5 to 50?C. Analytical Chemistry, 48, 1293-1295.
http://dx.doi.org/10.1021/ac50003a010
[20] Hetzer, H.B., Bates, R.G. and Robinson, R.A. (1966) Dissociation Constant of Morpholinium Ion and Related Thermodynamic Quantities from 0 to 55?. The Journal of Physical Chemistry, 70, 2869-2872.
http://dx.doi.org/10.1021/j100881a024
[21] Roy, R.N., Gibbons, J.J., Padron, L.J. and Moeller, J. (1980) Second-Stage Dissociation Constants of Piperazine- N-N’-bis(2-ethanesulfonic acid) Monosodium Monohydrate and Related Thermodynamic Functions in Water from 5 to 55?C. Analytical Chemistry, 52, 2409-2412.
http://dx.doi.org/10.1021/ac50064a040
[22] Bates, R.G. and Allen, G.F. (1960) Acid Dissociation Constant and Related Thermodynamic Quantities for Triethanolammonium Ion in Water from 0 to 50?C. Journal of Research of the National Bureau of Standards, 64A, 343-346.
http://dx.doi.org/10.6028/jres.064A.033
[23] Roy, R.N., Moore, C.P., Carlsten, J.A., Good, W.S., Harris, P., Rook, J.M., Roy, L.N. and Kuhler, K.M. (1997) Second Dissociation Constants of Two Substituted Aminoethanesulfonic Acids (MES) and (TES) in Water from 5 to 55?C. Journal of Solution Chemistry, 26, 1209-1216.
http://dx.doi.org/10.1023/A:1022937324983
[24] Roy, R.N., Robinson, R.A. and Bates R.G. (1973) Thermodynamic of the Two Dissociation Steps of N-Tris(hydroxyl- methyl)methylglycine (“Tricine”) in Water from 5 to 55?C. Journal of the American Chemical Society, 95, 8231-8235.
http://dx.doi.org/10.1021/ja00806a004
[25] Bates, R.G. (1973) Determination of pH. Wiley, New York.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.