Transient Stability Analysis of Power System by Coordinated PSS-AVR Design Based on PSO Technique
A. D. Falehi, M. Rostami, Hassan Mehrjadi
DOI: 10.4236/eng.2011.35055   PDF   HTML     9,067 Downloads   17,180 Views   Citations


In this paper, Power System Stabilizer (PSS) and Automatic Voltage Regulator (AVR) are coordinated to improve the transient stability of generator in power system. Coordinated design problem of AVR and PSS is formulated as an optimization problem. Particle Swarm Optimization (PSO) technique is an advanced robust search method by the swarming or cooperative behavior of biological populations mechanism. The performance of PSO has been certified in solution of highly non-linear objectives. Thus, PSO technique has been employed to optimize the parameters of PSS and AVR in order to reduce the power system oscillations during the load changing conditions in single-machine, infinite-bus power system. The results of nonlinear simulation suggest that, by coordinated design of AVR and PSS based on PSO technique power system oscillations are exceptionally damped. Correspondingly, it’s shown that power system stability is superiorly enhanced than the uncoordinated designed of the PSS and the AVR controllers.

Share and Cite:

A. Falehi, M. Rostami and H. Mehrjadi, "Transient Stability Analysis of Power System by Coordinated PSS-AVR Design Based on PSO Technique," Engineering, Vol. 3 No. 5, 2011, pp. 478-484. doi: 10.4236/eng.2011.35055.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. B. Duric, Z. M. Radojevic and E. D. Turkovic, “A Reduced Order Multi Machine Power System Model Suitable for Small Signal Stability Analysis,” Electrical Power and Energy Sys-tems, Vol. 20, No. 5, 1998, pp. 369-374.
[2] H. Yassami, A. Darabi and S. M. R. Ra?ei, “Power System Stabilizer Design Using Strength Pareto Multi-Objective Optimization Ap-proach,” Electric Power Systems Research, Vol. 80. No. 7, 2010, pp. 838-846. doi:10.1016/j.epsr.2009.12.011
[3] V. Mukherjee and S. P. Ghoshal, “Comparison of Intelligent Fuzzy Based AGC Coor-dinated PID Controlled and PSS Controlled AVR System,” Electrical Power and Energy Systems, Vol. 29, No. 9, 2007, pp. 679-689. doi:10.1016/j.ijepes.2007.05.002
[4] S. Gomes Jr., N. Mar-tins and C. Portela, “Computing Small-Signal Stability Boundaries for Large-Scale Power Systems,” IEEE Transac-tions on Power Systems, Vol. 18, No. 2, 2003, pp. 747-752. doi:10.1109/TPWRS.2003.811205
[5] C. Liu, R. Yokoyama, K. Koyanagi and K. Y. Lee, “PSS Design for Damping of In-ter-Area Power Oscillations by Coherency-Based Equivalent Model,” Electrical Power and Energy Systems, Vol. 26, No.7, 2004, pp. 535-544. doi:10.1016/j.ijepes.2004.01.007
[6] F. P. Demello and C. Concordla, “Concepts of synchronous Machine Stability as Affected by Excitation Control,” IEEE Transac-tions, Power Apparatus System, Vol. 88, No. 4, pp. 189-202, 1969.doi:10.1109/TPAS.1969.292452
[7] M. Klein, G. J. Rogers and P. Kundur, “A Fundamental Study of Inter-Area Oscillations in Power Systems,” IEEE Transaction on Power Systems, Vol. 6, No. 3, 1991, pp. 914-921. doi:10.1109/59.119229
[8] A. M. El-Zonkoly, A. A. Khalil and N. M. Ahmied, “Optimal Tunning of Lead-Lag and Fuzzy Logic Power System Stabilizers Using Particle Swarm Optimi-zation,” Expert Systems with Applications, Vol. 36, No. 2, 2009, pp. 2097-2106. doi:10.1016/j.eswa.2007.12.069
[9] E. R. C. Viveros, G. N. Taranto and D. M. Falc?o, “Tuning of Genera-tor Excitation Systems Using Meta-Heuristics,” IEEE Power Engineering Society General Meeting, Montreal, 16 October 2006, p. 6.doi:10.1109/PES.2006.1709524
[10] Z. Lubosuy, “Dual Input Quasi-Optimal PSS for Generating Unit with Static Excitation System,” Power Plants and Power Systems Control, Vol. 5, 2006.doi:10.3182/20060625-4-CA-2906.00051
[11] T. R. Jyothsna and K. Vaisakh, “Design of a Decentralized Non-linear Controller for Transient Stability Improvement under Symmetrical and Unsymmetrical Fault Condition: A comparative Analysis with SSSC,” IEEE Power Systems Con-ference and Exposition, 15-18 March 2009, Seattle, pp. 1-8.
[12] P. Kunder, “Power System Stability and Control,” McGraw, Hill, New York, 2001
[13] P. S. Rao and I. Sen, “Robust Pole Placement Stabilizer Design Using Linear Matrix Inequalities,” IEEE Transactions on Power Systems, Vol. 15, No. 1, 2000, pp. 3035-3046.
[14] M. A. Abido, “Pole Place-ment Technique for PSS and TCSC-Based Stabilizer Design Using Simulated Annealing,” International Journal of Electri-cal Power and Energy Systems, Vol. 22, No. 8, 2000, pp. 543-554.doi:10.1016/S0142-0615(00)00027-2
[15] B. C. Pal, “Robust Pole Placement versus Root-Locus Approach in the Context of Damping Interarea Oscillations in Power Systems,” IEE Proceedings on Generation, Transmission and Distribu-tion, Vol. 49, No. 6, 2002, pp. 739-745. doi:10.1049/ip-gtd:20020659
[16] L. Rouco and F. L. Pagola, “An Eigenvalue Sensitivity Approach to Location and Control-ler Design of Controllable Series Capacitor for Damping Power System Oscillations,” IEEE Transactions on Power Systems, Vol. 12, No. 4, 1997, pp. 1660-1666. doi:10.1109/59.627873
[17] M. E. About-Ela, A. A. Sallam, J. D. McCalley and A. A. Fouad, “Damping Controller Design for Power System Oscillations Using Global Signals,” IEEE Transactions on Power Systems, Vol. 11, No. 2, pp. 767-773, 1996.
[18] S. Panda and N. P. Padhy, “Optimal Location and Controller Design of STATCOM for Power System Stability Improvement Using PSO,” Journal of the Franklin Institute, Vol. 345, No. 2, 2008, pp. 166-181. doi:10.1016/j.jfranklin.2007.08.002
[19] R. L. Haupt and S. E. Haupt, “Practical Genetic Algorithms,” Wiley, New York, 2004
[20] G. Wang, M. Zhan, X. Xu and C. Jiang, “Optimiza-tion of Controller Parameters Based on the Improved Genetic Algorithms,” Proceedings of the 6th World Congress on Intel-ligence Control and Automation, 21-23 June 2006, Dalian, pp. 3695-3698.doi:10.1109/WCICA.2006.1713060
[21] Q. Y. Jiang, Y. J. Cao and S. J. Cheng, “A Genetic Approach to De-sign a HVDC Supplementary Subsynchronous Damping Con-troller,” IEEE Transaction on Power Delivery, Vol. 20, No. 2. pp. 528-532, 2005.doi:10.1109/TPWRD.2004.838522
[22] Z. L. Gaing, “A Particle Swarm Optimization Approach for Op-timum Design of PID Controller in AVR System,” IEEE Transactions on Energy Conversion, Vol. 19, No. 2, 2004, pp. 384-91. doi:10.1109/TEC.2003.821821
[23] S. Panda, S. C. Swain, P. K. Rautray, R. K. Malik and G. Panda, “Design and Analysis of SSSC-Based Supplementary Damping Controller,” Simulation Modelling Practice and Theory, Vol. 18, No. 9, 2010, pp. 1199-1213. doi:10.1016/j.simpat.2010.04.007
[24] M. A. Abido, “Simu-lated Annealing Based Approach to PSS and FACTS Based Stabilizer Tuning,” Electrical Power and Energy Systems, Vol. 22, No. 4, 2000, pp. 247-258. doi:10.1016/S0142-0615(99)00055-1
[25] C. C. A. Rajan, “A Solution to the Economic Dispatch Using EP Based SA Algo-rithm on Large Scale Power System,” International Journal of Power and Energy Systems, Vol. 32, No. 6, 2010, pp. 583-591.
[26] J. Yuryevich and K. P. Wong, “Evolutionary Programming Based Optimal Power Flow Algorithm,” IEEE Transactions on Power System, Vol. 14, No. 4, 1999, pp. 1245-1250. doi:10.1109/59.801880
[27] Q. H. Wu and J. T. Ma, “Power System Optimal Reactive Power Dispatch Using Evolutionary Programming,” IEEE Transactions on Power System, Vol. 10, No. 3, 1995, pp. 1243-1249. doi:10.1109/59.466531
[28] S. Panda, “Differential Evolu-tionary Algorithm for TCSC-Based Controller Design,” Simu-lation, Model, Practice and Theory, Vol. 17, No. 10, 2009, pp. 1618-1634. doi:10.1016/j.simpat.2009.07.002
[29] S. K. Wang, J. P. Chiou, C. W. Liu, “Parameters Tuning of Power System Stabilizers Using Improved Ant Direction Hybrid Differential Evolution,” International Journal of Electrical Power and En-ergy Systems, Vol. 31, No. 1, 2009, pp. 34-42. doi:10.1016/j.ijepes.2008.10.003
[30] J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,” Proceedings of IEEE International Conference of Neural Networks, Vol. 4, 1995, pp. 1942-1948.doi:10.1109/ICNN.1995.488968
[31] H. Shayeghi, A. Safari and H. A. Shayanfar, “PSS and TCSC Damping Con-troller Coordinated Design Using PSO in Multi-Machine Power System,” Energy Conversion and Management, Vol. 51, No. 12, 2010, pp. 2930-2937. doi:10.1016/j.enconman.2010.06.034
[32] Luonan Chen, Hideya Tanaka , Kazuo Katou , Yoshiyuki Nakamura., “Stabil-ity analysis for digital controls of power systems,” Electric Power Systems Research , Vol. 55, No. 2, pp. 79-86, 2000. doi:10.1016/S0378-7796(99)00097-8
[33] R. C. Eberhart, J. Kennedy and Y. Shi, “Swarm Intelligence,” Morgan Kaufman Publishers, San Francisco, 2001.
[34] C. T. Chen, “Analog and Digital Control Design: Transfer Function, Space State, and Algebraic Methods,” Oxford University Press, Cambridge, 1993.
[35] G. I. Rashed, H. I. Shaheen, X. Z. Duan and S. J. Cheng, “Evolutionary Optimization Techniques for Optimal Location and Parameter Setting of TCSC under Single Line Contingency,” Applied Mathematics and Computation, Vol. 205, pp. 133-147, 2008.
[36] Y. J. Liu and X. X. He, “Model-ing Identi?cation of Power Plant Thermal Process Based on PSO Algorithm,” 2005 American Control Conference, 8-10 June 2005, Portland, pp. 4484-4489.
[37] J. Kennedy and R. Eberhart, “Swarm Intelligence,” 1st Edition, Academic press, San Diego, 2001.
[38] Panda, N. P. Padhy, “Comparison of particle swarm optimization and genetic algorithm for FACTS- based controller design,” Applied Soft Com-puting, Vol. 8, No. 4, 2008, pp. 1418-1427. doi:10.1016/j.asoc.2007.10.009

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.