Hydrogen bonds of interfacial water in human breast cancer tissue compared to lipid and DNA interfaces

Abstract

The paper presents the results for water confined in a human breast cancerous tissue, a single stranded DNA, a double stranded DNA and in phospholipids (DPPC - D-a-Phosphati dylcholine, dipalmitoyl). The interfacial water in DNA and lipids is represented by a double band in the region of the OH stretching mode of water corresponding to the symmetric and asymmetric vibrational modes, in contrast to water confined in the cancerous breast tissue where only one band at 3311 cm-1 has been recorded. The marked red-shift of the maximum peak position of the OH stretching mode confirms that the vibrational properties of the interfacial water observed in restricted biological environment differ drastically from those in bulk water. The change of vibrational pattern of behavior may be due to the decoupling of the vibrations of the OH bonds in water molecule or change of the vibrational selection rules at biological interfaces. According to our knowledge Raman vibrational properties of water confined in the normal and cancerous breast tissue of the same patient have not been reported in literature yet. Here we have also presented the first Raman ‘optical biopsy’ images of the non-cancerous and cancerous (infiltrating ductal cancer) human breast tissues.

Share and Cite:

Abramczyk, H. , Brozek-Pluska, B. , Surmacki, J. , Jablonska-Gajewicz, J. and Kordek, R. (2011) Hydrogen bonds of interfacial water in human breast cancer tissue compared to lipid and DNA interfaces. Journal of Biophysical Chemistry, 2, 159-170. doi: 10.4236/jbpc.2011.22020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Bagchi, B. (2005) Water Dynamics in the hydration layer around proteins and micelles. Chemical Reviews, 105, 3197-3218. doi:10.1021/cr020661+
[2] Schwabe, J.W.R. (1997) The role of water in protein-DNA interactions. Structural Biology, 7, 126-134.
[3] Pal, S.K., Zhao, L. and Zewail, A.H. (2003) Water at DNA surfaces: Ultrafast dynamics in minor groove recognition, Proceedings of the National Academy of Sciences, 100, 8113-8118. doi:10.1073/pnas.1433066100
[4] Reddy, Ch.K., Dass, A. and Jayaram, B. (2001) Do water molecules mediate protein-dna recognition? Journal of Molecular Biology, 314, 619-632. doi:10.1006/jmbi.2001.5154
[5] Tan, H.S., Piletic, I. R. and Fayer, M.D. (2005) Orientational dynamics of water confined on a nanometer length scale in reverse micelles. Journal of Chemical Physics, 122, Article ID: 174501. doi:10.1063/1.1883605
[6] Tan, H.S., Piletic, I.R., Riter, R.E., Levinger, N.E. and Fayer, M.D. (2005) Dynamics of water confined on a nanometer length scale in reverse micelles: Ultrafast infrared vibrational echo spectroscopy. Physical Review Letters, 94, Article ID: 057405. doi:10.1103/PhysRevLett.94.057405
[7] Piletic, I.R., Tan, H.S. and Fayer, M.D. (2005) Dynamics of nanoscopic water: Vibrational echo and infrared pump-probe studies of reverse micelles. Journal of Physical Chemistry B, 109, 21273-21284. doi:10.1021/jp051837p
[8] Piletic, I.R., Moilanen, D.E., Spry, D.B., Levinger, N.E. and Fayer, M.D. (2006) Testing the core/shell model of nanoconfined water in reverse micelles using linear and nonlinear IR spectroscopy. Journal of Physical Chemistry A, 110, 4985-4999. doi:10.1021/jp061065c
[9] Dokter, A.M., Woutersen, S. and Bakker, H.J. (2006) Inhomogeneous dynamics in confined water nanodroplets. Proceedings of the National Academy of Sciences, 103, 15355-15358. doi:10.1073/pnas.0603239103
[10] Jacobs, R.E. and White, S.H. (1989) The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry, 28, 3421-3437. doi:10.1021/bi00434a042
[11] Gruszecki, W.I. and Strza?ka, K. (2005) Carotenoids as modulators of lipid membrane physical properties. Biochemica et Biophysica Acta, 1740, 108-115.
[12] Teeter, M.M. (1991) Water-protein interactions: Theory and experiment. Annual Review of Biophysics and Biophysical Chemistry, 20, 577-600. doi:10.1146/annurev.bb.20.060191.003045
[13] Williams, M.A., Goodfellow, J.M. and Thornton, J.M. (1994) Buried waters and internal cavities in monomeric proteins. Protein Science, 3, 1224-1235. doi:10.1002/pro.5560030808
[14] Burling, F.T., Weis, W.I., Flaherty, K.M. and Brunger, A.T. (1996) Direct observation of protein solvation and discrete disorder with experimental crystallographic phases. Science, 271, 72-77. doi:10.1126/science.271.5245.72
[15] Berman, H.M. (1994) Hydration of DNA: Take 2. Current Opinion in Structural Biology, 4, 345-350. doi:10.1016/S0959-440X(94)90102-3
[16] Eisenstein, M. and Shakked, Z. (1995) Hydration patterns and intermolecular interactions in A-DNA crystal structures. Implications for DNA recognition. Journal of Molecular Biology, 248, 662-678. doi:10.1006/jmbi.1995.0250
[17] Egli, M., Portmann, S. and Usman, N. (1996) RNA hydration: A detailed look. Biochemistry, 35, 8489-8494. doi:10.1021/bi9607214
[18] Chergui, M. and Zewail, A.H. (2009) Electron and X-ray methods of ultrafast structural dynamics: Advances and applications. ChemPhysChem: A European Journal of Chemical Physics and Physical, 10, 28-43.
[19] Pratt, L.R. and Pohorille, A. (2002) Hydrophobic effects and modeling of biophysical aqueous solution interfaces. Chemical Reviews, 102, 2671-2692. doi:10.1021/cr000692+
[20] Benjamin, I. (1996) Chemical reactions and solvation at liquid interfaces: A microscopic perspective. Chemical Reviews, 96, 1449-1476. doi:10.1021/cr950230+
[21] Nandi, N., Bhattacharyya, K. and Bagchi, B. (2000) Dielectric relaxation and salvation dynamics of water in complex chemical and biological systems. Chemical Reviews, 100, 2013-2045. doi:10.1021/cr980127v
[22] Bagchi, B. and Biswas, R. (1998) Ionic mobility and ultrafast solvation: Control of a slow phenomenon by fast dynamics. Accounts of Chemical Research, 31, 181-187. doi:10.1021/ar970226f
[23] Bagchi, B., Oxtoby, D.W. and Fleming, G.R. (1994) Theory of the time development of the Stokes shift in polar media. Chemical Physics, 86, 257-267. doi:10.1016/0301-0104(84)80014-2
[24] Van der Zwan, G. and Hynes, J.T. (1985) Time-dependent fluorescence solvent shifts, dielectric friction, and nonequilibrium solvation in polar solvents. Journal of Physical Chemistry, 89, 4181-4188. doi:10.1021/j100266a008
[25] Friedman, H.L., Reineri, F.O. and Resat, H. (1993) Molecular Liquids. In: Teixeira-Diaz, J. Ed., NATO-ASI Series, Kluwer Academic Publishers, Amsterdam.
[26] Stratt, R.M. and Maroncelli, M. (1996) Nonreactive dynamics in solution: the emerging molecular view of solvation dynamics and vibrational relaxation. Journal of Physical Chemistry, 100, 12981-12996. doi:10.1021/jp9608483
[27] Barbara, P.F. and Jarzeba, W. (1990) Ultrafast photochemical intramolecular charge and excited state salvation. Advances in Photochemistry, 15, 1-68. doi:10.1002/9780470133453.ch1
[28] Maroncelli, M. MacInnis, J. and Fleming, G.R. (1989) Polar solvent dynamics and electron-transfer reactions. Science, 243, 1674-1681. doi:10.1126/science.243.4899.1674
[29] Bagchi, B. (1989) Dynamics of solvation and charge transfer reactions in dipolar liquids. Annual Review of Physical Chemistry, 40, 115-141. doi:10.1146/annurev.pc.40.100189.000555
[30] Rossky, P. J. and Simon, J.D. (1994) Dynamics of chemical processes in polar solvents. Nature, 370, 263-269. doi:10.1038/370263a0
[31] Fleming, G.R. and Cho, M. (1996) Chromophore-solvent dynamics. Annual Review of Physical Chemistry, 47, 109-134. doi:10.1021/jp0213506
[32] Pal, S.K., Peon, J., Bagchi, B. and Zewail, A.H. (2002) Biological water: femtosecond dynamics of macromolecular hydration. Journal of Physical Chemistry B, 106, 12376-12395. doi:10.1021/jp0213506
[33] Nandi, N. and Bagchi, B. (1996) Ultrafast solvation dynamics of an ion in the gamma-cyclodextrin cavity: the role of restricted environment. Journal of Physical Chemistry, 100, 13914-13919. doi:10.1021/jp960134s
[34] Abramczyk, H., Surmacki, J., Bro?ek-P?uska, B., Morawiec, Z. and Tazbir, M. (2009) The hallmarks of breast cancer by Raman spectroscopy. Journal of Molecular Structure, 924-926, 175-182. doi:10.1016/j.molstruc.2008.12.055
[35] Abramczyk, H., Placek, I., Bro?ek-P?uska, B., Kurczewski, K., Morawiec, Z. and Tazbir, M. (2008) Human breast tissue cancer diagnosis by Raman spectroscopy. Spectroscopy, 22, 113-121.
[36] Kim, J. and Cremer, P.S. (2001) Investigations of water structure at the solid/liquid interface in the presence of supported lipid bilayers by vibrational sum frequency spectroscopy. Langmuir, 17, 7255-7260. doi:10.1021/la0017274
[37] Cowan, M.L., Bruner, B.D., Huse, N., Dwyer, J.R., Chugh, B., Nibbering, E.T.J., Elsaesser, T. and Miller, R.J.D. (2005) Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature, 434, 199-202. doi:10.1038/nature03383
[38] Steinel, T., Asbury, J.B., Zheng, J. and Fayer, M.D. (2004) Watching hydrogen bonds break: a transient absorption study of water. Journal of Physical Chemistry A, 108, 10957-10964. doi:10.1021/jp046711r
[39] Ghosh, A., Smits, M., Bredenbeck, J. and Bonn, M. (2007) Membrane-bound water in energetically decoupled from nearby bulk water: an ultrafast surface-specific investigation. Journal of the American Chemical Society, 129, 9608-9609. doi:10.1021/ja073130h
[40] Dwyer, J.R., Szyc, L., Nibbering, E.T.J. and Elsaesser, T. (2008) Ultrafast vibrational dynamics of adenine- thymine base pairs in DNA oligomers. Journal of Physical Chemistry B, 112, 11194-11197. doi:10.1021/jp8054119
[41] Elsaesser, T. (2009) Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase. Accounts of Chemical Research, 42, 1220-1228. doi:10.1021/ar900006u
[42] Abramczyk, H., Bro?ek-P?uska, B., Surmacki, J. Jab?ońska, J. and Kordek, R. (2010) Journal of Molecular Liquids, unpublished.
[43] Elsaesser, T. and Bakker, H.J. (2002) Ultrafast hydrogen bonding dynamics and proton transfer processes in the condensed phase. Kluwer Academic Publishers, Dordrecht.
[44] Abramczyk, H. (1990) IR [nu] s (XH) Absorption band shape in H-bonded complex I: Theory. Chemical Physics, 144, 305-318. doi:10.1016/0301-0104(90)80096-G
[45] Abramczyk, H. (1990) IR [nu] s (XI-I) Absorption band shape of H-bonded complex in condensed media. II: Numerical calculations of the profiles. Chemical Physics, 144, 319-326. doi:10.1016/0301-0104(90)80097-H
[46] Martí, J., Guàrdia, E. and Padró, J.A. (1994) Dielectric properties and infrared spectra of liquid water: Influence of the dynamic cross correlations. Journal of Physical Chemistry, 101, 10883-10891. doi:10.1063/1.467838
[47] Ahlborn, H., Ji, X., Space, B. and Moore, P.B. (1999) A combined instantaneous normal mode and time correlation function description of the infrared vibrational spectrum of ambient water. Journal of Physical Chemistry, 111, 10622-10632. doi:10.1063/1.480415
[48] Ahlborn, H., Space, B. and Moore, P.B. (2000) The effect of isotopic substitution and detailed balance on the infrared spectroscopy of water: A combined time correlation function and instantaneous normal mode analysis. Journal of Chemical Physics, 112, 8083-8088. doi:10.1063/1.481408
[49] Bansil, R., Berger, R.T., Toukan, K., Ricci, M.A. and Chen, S.H. (1986) A molecular dynamics study of the OH stretching vibrational spectrum of liquid water. Chemical Physics Letters, 132, 165-172. doi:10.1016/0009-2614(86)80101-4
[50] Silvestrelli, P.L., Bernasconi, M. and Parrinello, M. (1997) Ab initio infrared spectrum of liquid water. Chemical Physics Letters, 277, 478-482. doi:10.1016/S0009-2614(97)00930-5
[51] Buch, V. (2005) Molecular structure and OH-stretch spectra of a liquid water surface. Journal of Physical Chemistry B, 109, 17771-17774. doi:10.1021/jp052819a
[52] Buch, V., Tarbuck, T, Richmond, G.L., Groenzin, H., Li, I. and Schultz, M.J. (2007) Sum frequency generation surface spectra of ice, water, and acid solution investigated by an exciton model. Journal of. Chemical Physics, 127, Article ID: 204710. doi:10.1063/1.2790437
[53] Torii, H. (2006) Time-domain calculations of the polarized Raman spectra, the transient infrared absorption anisotropy, and the extent of delocalization of the OH stretching mode of liquid water. Journal of Physical Chemistry A, 110, 9469-9477. doi:10.1021/jp062033s
[54] Buch, V., Bauerecker, S., Devlin, J.P., Buck, U. and Kazimirski, J.K. (2004) Water clusters in the size range of tens-thousands of molecules: A combined computational/spectroscopic outlook. International Reviews in Physical Chemistry, 23, 375-433. doi:10.1080/01442350412331316124
[55] Auer, B. and Skinner, J.L. (2007) Dynamical effects in line shapes for coupled chromophores: Time-averaging approximation. Journal of Chemical Physics, 127, Article ID: 104105.
[56] Jansen, T.I.C., Zhuang, W. and Mukamel, S. (2004) Stochastic Liouville equation simulation of multidimensional vibrational line shapes of trialanine. Journal of Chemical Physics, 121, 10577-10598. doi:10.1063/1.1807824
[57] Jansen, T.I.C., Dijkstra, A.G., Watson, T.M., Hirst, J.D. and Knoester, J. (2006) Modeling the amide I bands of small peptides. Journal of Chemical Physics, 125, Article ID: 044312.
[58] Jansen, T.I.C. and Knoester, J. (2006) Nonadiabatic effects in the two-dimensional infrared spectra of peptides: application to alanine dipeptide. Journal of Physical Chemistry B, 110, 22910-22916. doi:10.1021/jp064795t
[59] Mukamel, S. and Abramavicius, D. (2004) Many-body approaches for simulating coherent nonlinear spectroscopies of electronic and vibrational excitons. Chemical Reviews, 104, 2073-2098. doi:10.1021/cr020681b
[60] Zhuang, W., Abramavicius, D., Hayashi, T. and Mukamel, S. (2006) Simulation protocols for coherent femtosecond vibrational spectra of peptides. Journal of Physical Chemistry B, 110, 3362-3374. doi:10.1021/jp055813u
[61] Choi, J., Hahn, S. and Cho, M. (2005) Amide I IR, VCD, and 2D IR spectra of isotope-labeled α-helix in liquid water: Numerical simulation studies. International Journal of Quantum Chemistry, 104, 616-634. doi:10.1002/qua.20543
[62] Everitt, K.F., Lawrence, C.P. and Skinner, J.L. (2004) Density-dependent isotropic Raman line shapes in compressed room-temperature nitrogen. Journal of Physical Chemistry B, 108, 10440-10444. doi:10.1021/jp0379446
[63] Hahn, S., Ham, S. and Cho, M. (2005) Simulation studies of amide I IR absorption and two-dimensional IR spectra of β hairpins in liquid water. Journal of Physical Chemistry B, 109, 11789-11801. doi:10.1021/jp050450j
[64] Choi, J.H., Lee, H., Lee, K.K., Hahn, S. and Cho, M. (2007) Computational spectroscopy of ubiquitin: Comparison between theory and experiments. Journal of Chemical Physics, 126, Article ID: 045102. doi:10.1063/1.2424711
[65] Gorbunov, R.D., Nguyen, P.H., Kobus, M. and Stock, G. (2007) Quantum-classical description of the amide I vibrational spectrum of trialanine. Journal of Chemical Physics, 126, Article ID: 054509. doi:10.1063/1.2424711
[66] Jansen, T.I.C., Cringus, D. and Pshenichnikov, M.S. (2009) Dissimilar dynamics of coupled water vibrations. Journal of Physical Chemistry A, 113, 6260-6265. doi:10.1021/jp900480r
[67] Berendsen, H.J.C., Grigera, J.R. and Straatsma, T.P. (1987) The missing term in effective pair potentials. Journal of Physical Chemistry, 91, 6269-6271. doi:10.1021/j100308a038
[68] McQuarrie, D.A. (1976) Statistical Mechanics. Harper & Row, New York.
[69] Frisch, M.J., Trucks, G.W., Schlegel, H.B. and Scuseria, G.E. (2003) GAUSSIAN 03. Gaussian Inc., Pittsburgh PA.
[70] Colbert, D. and Miller, W.H. (1992) A novel discrete variable representation for quantum mechanical reactive scattering via the S‐matrix Kohn method. Journal of Chemical Physics, 96, 1982-1991. doi:10.1063/1.462100
[71] Morita, A. and Hynes, J.T. (2000) A theoretical analysis of the sum frequency generation spectrum of the water surface. Chemical Physics, 258, 371-390. doi:10.1063/1.462100
[72] Scherer, J.G. and Snyder, R.G. (1977) Raman intensities of single crystal ice Ih. Journal of Chemical Physics, 67, 4794-4811. doi:10.1063/1.434683
[73] Bertie, J.E., Francis, B.F. and Scherer, J.R. (1980) On the determination from Raman spectra of the polarizability derivative with respect to the O-D bond stretching coordinate in the ices. Journal of Chemical Physics, 73, 6352-6353. doi:10.1063/1.440103
[74] Wilson, E.B., Decius, J.C. and Cross, P.C. (1955) Molecular Vibrations. Dover, New York.
[75] Sadlej, J., Buch, V., Kazimirski, J.K. and Buck, U. (1999) Theoretical study of structure and spectra of cage clusters (H2O)n, n = 7 ? 10. Journal of Physical Chemistry A, 103 4933-4947. doi:10.1021/jp990546b
[76] Adams, D.J. and Dubey, G.S. (1987) Taming the Edwald sum in the computer simulation of charged system. Journal of Computation Physics, 72, 156-176. doi:10.1021/j100169a019
[77] Abramczyk, H. (1991) Absorption spectrum of the solvated electron. I: Theory. Journal of Physical Chemistry, 95, 6149-6155. doi:10.1021/j100169a019
[78] Abramczyk, H. and Kroh, J. (1992) Near-IR absorption spectrum of the solvated electron in alcohols, deuterated water, and deuterated glasses: lack of observance of the near-IR spectrum in water glasses. Journal of Physical Chemistry, 96, 3653-3658. doi:10.1021/j100188a019
[79] Abramczyk, H. (2004) Femtosecond primary events in bacteriorhodopsin and its retinal modified analogs: Revision of commonly accepted interpretation of electronic spectra of transient intermediates in bacteriorhodpsin photocycle. Journal of Chemical Physics, 120, 11120-11132. doi:10.1063/1.1737731
[80] Terentis, A., Uji, L., Abramczyk, H. and Atkinson, G.H. (2005) Primary events in the bacteriorhodopsin photocycle: Torsional vibrational dephasing in the first excited electronic state. Chemical Physics, 313, 51-62. doi:10.1016/j.chemphys.2004.12.012
[81] Volkov, V.V., Palmer, D.J. and Righini, R. (2007) Heterogeneity of water at the phospholipid membrane interface. Journal of Physical Chemistry B, 111, 1377-1383. doi:10.1021/jp065886t
[82] Kim, J. and Cremer, P.S. (2000) IR-Visible SFG investigations of interfacial water structure upon polyelectrolyte adsorption at the solid/liquid interface. Journal of the American Chemical Society, 122, 12371-12372. doi:10.1021/ja003215h
[83] Eisenberg, D. and Kauzmann, W. (1969) The structure and properties of water. Oxford University Press, New York.
[84] Yalamanchili, M.R., Atia, A.A. and Miller, J.D. (1996) Analysis of interfacial water at a hydrophilic silicon surface by in-situ FTIR/Internal reflection spectroscopy. Langmuir, 12, 4176-4184. doi:10.1021/la950340b
[85] Torre, R., Bartolini, P. and Righini, R. (2004) Structural relaxation in supercooled water by time-resolved spectroscopy. Nature, 428, 296-299. doi:10.1038/nature02409
[86] Moller, K.B., Rey, R. and Hynes, J.T. (2004) Hydrogen bond dynamics in water and ultrafast infrared spectroscopy: A theoretical study. Journal of Physical Chemistry A, 108, 1275-1289. doi:10.1021/jp035935r
[87] Ishiyama, T. and Morita, A. (2009) Vibrational spectroscopic response of intermolecular orientational correlation at the water surface. Journal of Physical Chemistry C, 113, 16299-16302. doi:10.1021/jp9060957
[88] Nagata, Y. and Mukamel, S. (2010) Vibrational sum-frequency generation spectroscopy at the water/lipid interface: molecular dynamics simulation study. Journal of the American Chemical Society, 132, 6434-6442. doi:10.1021/ja100508n
[89] Bertie, J.E., Ahmed, M.K. and Eysel, H.H. (1989) Infrared intensities of liquids. 5. Optical and dielectric constants, integrated intensities, and dipole moment derivatives of water and water-d2 at 22.degree.C. Journal of Physical Chemistry, 93, 2210-2218. doi:10.1021/j100343a008
[90] Brubach, J.B., Mermet, A., Filabozzi, A., Gerschel, A. and Roy, P. (2005) Signatures of the hydrogen bonding in the infrared bands of water. Journal of Chemical Physics, 122, Article ID: 184509-1-184509-7. doi:10.1063/1.1894929
[91] Bertie, J.E. and Lan, Z. (1996) Infrared intensities of liquids XX: the intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H2O(l) at 25 degree.C between 15,000 and 1 cm–1. Applied Spectrosctroscopy, 50, 1047-1057. doi:10.1366/0003702963905385
[92] Aroca, R. and Rodriguez-Lorente, S. (1997) Surface enhanced vibrational spectroscopy. Journal of Molecular Structure, 408-409, 17-22. doi:10.1016/S0022-2860(96)09489-6
[93] Walrafen, G.E. (1967) Raman spectral studies of the effects of temperature on water structure. Journal of Chemical Physics, 47, 114-126. doi:10.1063/1.1711834
[94] Walrafen, G.E. (2005) New Raman method for aqueous solutions: ξ-function dispersion evidence for strong F?-water H–bonds in aqueous CsF and KF solutions. Journal of Chemical Physics, 122, Article ID: 074506.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.