[1]
|
Lestas, I., Vinnicombe, G. and Paulsson, J. (2010) Fundamental Limits on the Suppression of Molecular Fluctuations. Nature, 467, 174-178. http://dx.doi.org/10.1038/nature09333
|
[2]
|
Raj, A. and van Oudenaarden, A. (2008) Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences. Cell, 135, 216-226. http://dx.doi.org/10.1016/j.cell.2008.09.050
|
[3]
|
Samoilov, M.S. and Arkin, A.P. (2006) Deviant Effects in Molecular Reaction Pathways. Nature Biotechnology, 24, 1235-1240. http://dx.doi.org/10.1038/nbt1253
|
[4]
|
Gillespie, D.T. (1976) A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. Journal of Computational Physics, 22, 403-434.
http://dx.doi.org/10.1016/0021-9991(76)90041-3
|
[5]
|
Gillespie, D.T. (1992) A Rigorous Derivation of the Chemical Master Equation. Physica A, 188, 404-425.
http://dx.doi.org/10.1016/0378-4371(92)90283-V
|
[6]
|
Protter, P.E. (2005) Stochastic Integration and Differential Equations. Number 21 in Stochastic Modelling and Applied Probability. 2nd Edition, Version 2.1, Springer, Berlin.
|
[7]
|
Applebaum, D. (2004) Lévy Processes and Stochastic Calculus, Volume 93 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge.
|
[8]
|
Situ, R. (2005) Theory of Stochastic Differential Equations with Jumps and Applications. Mathematical and Analytical Techniques with Applications to Engineering. Springer, New York.
|
[9]
|
Øksendal, B. and Zhang, T. (2007) The Itô-Ventzell Formula and Forward Stochastic Differential Equations Driven by Poisson Random Measures. Osaka Journal of Mathematics, 44, 207-230.
|
[10]
|
Hausenblas, E. (2007) SPDEs Driven by Poisson Random Measure with Non Lipschitz Coefficients: Existence Results. Probability Theory and Related Fields, 137, 161-200.
|
[11]
|
Marinelli, C., Prévôt, C. and R?ckner, M. (2010) Regular Dependence on Initial Data for Stochastic Evolution Equations with Multiplicative Poisson Noise. Journal of Functional Analysis, 258, 616-649.
http://dx.doi.org/10.1016/j.jfa.2009.04.015
|
[12]
|
Marinelli, C. and R?ckner, M. (2010) Well-Posedness and Asymptotic Behavior for Stochastic Reaction-Diffusion Equations with Multiplicative Poisson Noise. Electronic Journal of Probability, 15, 1529-1555.
http://dx.doi.org/10.1214/EJP.v15-818
|
[13]
|
Filipovic, D., Tappe, S. and Teichmann, J. (2010) Jump-Diffusions in Hilbert Spaces: Existence, Stability and Numerics. Stochastics, 82, 475-520. http://dx.doi.org/10.1080/17442501003624407
|
[14]
|
van Kampen, N.G. (2004) Stochastic Processes in Physics and Chemistry. 2nd Edition, Elsevier, Amsterdam.
|
[15]
|
Higham, D.J. and Kloeden, P.E. (2005) Numerical Methods for Nonlinear Stochastic Differential Equations with Jumps. Numerische Mathematik, 101, 101-119. http://dx.doi.org/10.1007/s00211-005-0611-8
|
[16]
|
Li, T.J. (2007) Analysis of Explicit Tau-Leaping Schemes for Simulating Chemically Reacting Systems. Multiscale Modeling & Simulation, 6, 417-436. http://dx.doi.org/10.1137/06066792X
|
[17]
|
Engblom, S. (2009) Parallel in Time Simulation of Multiscale Stochastic Chemical Kinetics. Multiscale Modeling & Simulation, 8, 46-68. http://dx.doi.org/10.1137/080733723
|
[18]
|
Anderson, D.F. (2012) An Efficient Finite Difference Method for Parameter Sensitivities of Continuous Time Markov Chains. SIAM Journal on Numerical Analysis, 50, 2237-2258. http://dx.doi.org/10.1137/110849079
|
[19]
|
Kawamura, A. (2009) Lipschitz Continuous Ordinary Differential Equations Are Polynomial-Space Complete. 24th Annual IEEE Conference on Computational Complexity, Paris, 15-18 July 2009, 149-160.
|
[20]
|
Hutzenthaler, M., Jentzen, A. and Kloeden, P.E. (2011) Strong and Weak Divergence in Finite Time of Euler’s Method for Stochastic Differential Equations with Non-Globally Lipschitz Continuous Coefficients. Proceedings of the Royal Society A, 467, 1563-1576.
|
[21]
|
Chen, W.Y. and Bokka, S. (2005) Stochastic Modeling of Nonlinear Epidemiology. Journal of Theoretical Biology, 234, 455-470. http://dx.doi.org/10.1016/j.jtbi.2004.11.033
|
[22]
|
Ewens, W.J. (2004) Mathematical Population Genetics I. Theoretical Introduction, Volume 27 of Interdisciplinary Applied Mathematics. 2nd Edition, Springer, New York.
|
[23]
|
Escudero, C., Buceta, J., de la Rubia, F.J. and Lindenberg, K. (2004) Extinction in Population Dynamics. Physical Review E, 69, 021908.
|
[24]
|
Ethier, S.N. and Kurtz, T.G. (1986) Markov Processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York. http://dx.doi.org/10.1002/9780470316658
|
[25]
|
Brémaud, P. (1999) Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Number 31 in Texts in Applied Mathematics. Springer, New York. http://dx.doi.org/10.1007/978-1-4757-3124-8
|
[26]
|
Plyasunov, S. (2005) On Hybrid Simulation Schemes for Stochastic Reaction Dynamics.
http://arxiv.org/abs/math/0504477
|
[27]
|
Brémaud, P. (1981) Point Processes and Queues: Martingale Dynamics. Springer Series in Statistics. Springer, New York.
|
[28]
|
Daley, D.J. and Vere-Jones, D. (2003) An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods. 2nd Edition, Springer, New York.
|
[29]
|
Kurtz, T.G. (1978) Strong Approximation Theorems for Density Dependent Markov Chains. Stochastic Processes and Their Applications, 6, 223-240. http://dx.doi.org/10.1016/0304-4149(78)90020-0
|
[30]
|
Rathinam, M., Sheppard, P.W. and Khammash, M. (2010) Efficient Computation of Parameter Sensitivities of Discrete Stochastic Chemical Reaction Networks. Journal of Chemical Physics, 132, 034103.
http://dx.doi.org/10.1063/1.3280166
|
[31]
|
Kurtz, T.G. (1982) Representation and Approximation of Counting Processes. In: Fleming, W.H. and Gorostiza, L.G., Eds., Advances in Filtering and Optimal Stochastic Control, Vol. 42, Lecture Notes in Control and Information Sciences, Springer, Berlin, 177-191.
|
[32]
|
Str?m, T. (1975) On Logarithmic Norms. SIAM Journal on Numerical Analysis, 12, 741-753.
http://dx.doi.org/10.1137/0712055
|
[33]
|
Briat, C., Gupta, A. and Khammash, M. (2014) A Scalable Computational Framework for Establishing Long-Term Behavior of Stochastic Reaction Networks. PLoS Computational Biology, 10, e1003669.
|
[34]
|
Rathinam, M. (2014) Moment Growth Bounds on Continuous Time Markov Processes on Non-Negative Integer Lattices. To appear in Quart. Appl. Math. http://arxiv.org/abs/1304.5169
|
[35]
|
Meyn, S.P. and Tweedie, R.L. (1993) Stability of Markovian Processes III: Foster-Lyapunov Criteria for ContinuousTime Processes. Advances in Applied Probability, 25, 518-548. http://dx.doi.org/10.2307/1427522
|