Direct Detection and Quantification of Bacterial Genes Associated with Inflammation in DNA Isolated from Stool


Although predominantly associated with health benefits, the gut microbiota has also been shown to harbor genes that promote inflammation. In this work, we report a method for the direct detection and quantification of these pro-inflammatory bacterial genes by PCR and qPCR in DNA extracted from human stool samples. PCR reactions were performed to detect (i) the pks island genes, (ii) tcpC, which is present in some strains of Escherichia coli and (iii) gelE presented in some strains of Enterococcus faecalis. Additionally, we screened for the presence of the following genes encoding cyclomodulins that disrupted mammalian cell division: (iv) cdt (which encodes the cytolethal distending toxin) and (v) cnf-1 (which encodes the cytotoxic necrotizing factor-1). Our results show that 20% of the samples (N = 41) tested positive for detectable amounts of pks island genes, whereas 10% of individuals were positive for tcpC or gelE and only one individual was found to harbor the cnf-1 gene. Of the 13 individuals that were positive for at least one of the pro-inflammatory genes, 5 were found to harbor more than one. A quantitative version of the assay, which used real-time PCR, revealed the pro-inflammatory genes to be in high copy numbers: up to 1.3 million copies per mg of feces for the pks island genes. Direct detection of specific genes in stool could prove useful toward screening for the presence of pro-inflammatory bacterial genes in individuals with inflammatory bowel diseases or colorectal cancer.

Share and Cite:

Gómez-Moreno, R. , Robledo, I. and Baerga-Ortiz, A. (2014) Direct Detection and Quantification of Bacterial Genes Associated with Inflammation in DNA Isolated from Stool. Advances in Microbiology, 4, 1065-1075. doi: 10.4236/aim.2014.415117.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Balter, M. (2012) Taking Stock of the Human Microbiome and Disease. Science, 336, 1246-1247.
[2] Eckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S.R., Nelson, K.E. and Relman, D.A. (2005) Diversity of the Human Intestinal Microbial Flora. Science, 308, 1635-1638.
[3] Blaser, M., Bork, P., Fraser, C., Knight, R. and Wang, J. (2013) The Microbiome Explored: Recent Insights and Future Challenges. Nature Reviews Microbiology, 11, 213-217.
[4] Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D.R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H., Bjorn, Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Dore, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., Bork, P., Dusko Ehrlich, S. and Wang, J. (2010) A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature, 464, 59-65.
[5] Wikoff, W.R., Anfora, A.T., Liu, J., Schultz, P.G., Lesley, S.A., Peters, E.C. and Siuzdak, G. (2009) Metabolomics Analysis Reveals Large Effects of Gut Microflora on Mammalian Blood Metabolites. Proceedings of the National Academy of Sciences of the United States of America, 106, 3698-3703.
[6] Ursell, L.K. and Knight, R. (2013) Xenobiotics and the Human Gut Microbiome: Metatranscriptomics Reveal the Active Players. Cell Metabolism, 17, 317-318.
[7] Sperandio, V. (2012) Microbiology. Virulence or competition? Science, 336, 1238-1239.
[8] Mazmanian, S.K., Round, J.L. and Kasper, D.L. (2008) A Microbial Symbiosis Factor Prevents Intestinal Inflammatory Disease. Nature, 453, 620-625.
[9] DuPont, A.W. and DuPont, H.L. (2011) The Intestinal Microbiota and Chronic Disorders of the Gut. Nature Reviews Gastroenterology and Hepatology, 8, 523-531.
[10] Manichanh, C., Borruel, N., Casellas, F. and Guarner, F. (2012) The Gut Microbiota in IBD. Nature Reviews Gastroenterology and Hepatology, 9, 599-608.
[11] Frank, D.N., St Amand, A.L., Feldman, R.A., Boedeker, E.C., Harpaz, N. and Pace, N.R. (2007) Molecular-Phylogenetic Characterization of Microbial Community Imbalances in Human Inflammatory Bowel Diseases. Proceedings of the National Academy of Sciences of the United States of America, 104, 13780-13785.
[12] Sears, C.L. and Garrett, W.S. (2014) Microbes, Microbiota, and Colon Cancer. Cell Host & Microbe, 15, 317-328.
[13] Kinross, J.M., Darzi, A.W. and Nicholson, J.K. (2011) Gut Microbiome-Host Interactions in Health and Disease. Genome Medicine, 3, 14.
[14] Parsonnet, J., Friedman, G.D., Vandersteen, D.P., Chang, Y., Vogelman, J.H., Orentreich, N. and Sibley, R.K. (1991) Helicobacter pylori Infection and the Risk of Gastric Carcinoma. New England Journal of Medicine, 325, 1127-1131.
[15] Trudel, J.L. (2007) Clostridium difficile Colitis. Clinics in Colon and Rectal Surgery, 20, 13-17.
[16] Nougayrède, J., Homburg, S., Taieb, F., Boury, M., Brzuszkiewicz, E., Gottschalk, G., Buchrieser, C., Hacker, J., Dobrindt, U. and Oswald, E. (2006) Escherichia coli Induces DNA Double-Strand Breaks in Eukaryotic Cells. Science, 313, 848-851.
[17] Cuevas-Ramos, G., Petit, C.R., Marcq, I., Boury, M., Oswald, E. and Nougayrède, J. (2010) Escherichia coli Induces DNA Damage in Vivo and Triggers Genomic Instability in Mammalian Cells. Proceedings of the National Academy of Sciences of the United States of America, 107, 11537-11542.
[18] Arthur, J.C., Perez-Chanona, E., Mühlbauer, M., Tomkovich, S., Uronis, J.M., Fan, T., Campbell, B.J., Abujamel, T., Dogan, B., Rogers, A.B., Rhodes, J.M., Stintzi, A., Simpson, K.W., Hansen, J.J., Keku, T.O., Fodor, A.A. and Jobin, C. (2012) Intestinal Inflammation Targets Cancer-Inducing Activity of the Microbiota. Science, 338, 120-123.
[19] Yadav, M., Zhang, J., Fischer, H., Huang, W., Lutay, N., Cirl, C., Lum, J., Miethke, T. and Svanborg, C. (2010) Inhibition of TIR Domain Signaling by TcpC: MyD88-Dependent and Independent Effects on Escherichia coli Virulence. PLoS Pathogens, 6, e1001120.
[20] Fabbri, A., Travaglione, S., Ballan, G., Loizzo, S. and Fiorentini, C. (2013) The Cytotoxic Necrotizing Factor 1 from E. coli: A Janus Toxin Playing with Cancer Regulators. Toxins (Basel), 5, 1462-1474.
[21] Garcia, T.A., Ventura, C.L., Smith, M.A., Merrell, D.S. and O’Brien, A.D. (2013) Cytotoxic Necrotizing Factor 1 and Hemolysin from Uropathogenic Escherichia coli Elicit Different Host Responses in the Murine Bladder. Infection and Immunity, 81, 99-109.
[22] Steck, N., Hoffmann, M., Sava, I.G., Kim, S.C., Hahne, H., Tonkonogy, S.L., Mair, K., Krueger, D., Pruteanu, M., Shanahan, F., Vogelmann, R., Schemann, M., Kuster, B., Sartor, R.B. and Haller, D. (2011) Enterococcus faecalis Metalloprotease Compromises Epithelial Barrier and Contributes to Intestinal Inflammation. Gastroenterology, 141, 959-971.
[23] Johnson, J.R., Johnston, B., Kuskowski, M.A., Nougayrede, J. and Oswald, E. (2008) Molecular Epidemiology and Phylogenetic Distribution of the Escherichia coli pks Genomic Island. Journal of Clinical Microbiology, 46, 3906-3911.
[24] Vankerckhoven, V., Van Autgaerden, T., Vael, C., Lammens, C., Chapelle, S., Rossi, R., Jabes, D. and Goossens, H. (2004) Development of a Multiplex PCR for the Detection of asa1, gelE, cylA, esp, and Hyl Genes in Enterococci and Survey for Virulence Determinants among European Hospital Isolates of Enterococcus faecium. Journal of Clinical Microbiology, 42, 4473-4479.
[25] Robledo, I.E., Aquino, E.E. and Vazquez, G.J. (2011) Detection of the KPC Gene in Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii during a PCR-Based Nosocomial Surveillance Study in Puerto Rico. Antimicrobial Agents and Chemotherapy, 55, 2968-2970.
[26] Hood, L. (2012) Tackling the Microbiome. Science, 336, 1209.
[27] Zaneveld, J., Turnbaugh, P.J., Lozupone, C., Ley, R.E., Hamady, M., Gordon, J.I. and Knight, R. (2008) Host-Bacterial Coevolution and the Search for New Drug Targets. Current Opinion in Chemical Biology, 12, 109-114.
[28] Kuczynski, J., Costello, E.K., Nemergut, D.R., Zaneveld, J., Lauber, C.L., Knights, D., Koren, O., Fierer, N., Kelley, S.T., Ley, R.E., Gordon, J.I. and Knight, R. (2010) Direct Sequencing of the Human Microbiome Readily Reveals Community Differences. Genome Biology, 11, 210.
[29] De Palma, G., Collins, S.M., Bercik, P. and Verdu, E.F. (2014) The Microbiota-Gut-Brain Axis in Gastrointestinal Disorders: Stressed Bugs, Stressed Brain or Both? Journal of Physiology, 592, 2989-2997.
[30] Belkaid, Y. and Hand, T.W. (2014) Role of the Microbiota in Immunity and Inflammation. Cell, 157, 121-141.
[31] Haiser, H.J. and Turnbaugh, P.J. (2012) Is It Time for a Metagenomic Basis of Therapeutics? Science, 336, 1253-1255.
[32] Bäckhed, F., Ding, H., Wang, T., Hooper, L.V., Koh, G.Y., Nagy, A., Semenkovich, C.F. and Gordon, J.I. (2004) The Gut Microbiota as an Environmental Factor that Regulates Fat Storage. Proceedings of the National Academy of Sciences of the United States of America, 101, 15718-15723.
[33] Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R. and Gordon, J.I. (2006) An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature, 444, 1027-1031.
[34] McCoy, A.N., Araujo-Perez, F., Azcarate-Peril, A., Yeh, J.J., Sandler, R.S. and Keku, T.O. (2013) Fusobacterium Is Associated with Colorectal Adenomas. PLoS ONE, 8, e53653.
[35] Keku, T.O., McCoy, A.N. and Azcarate-Peril, A.M. (2013) Fusobacterium spp. and Colorectal Cancer: Cause or Consequence? Trends in Microbiology, 21, 506-508.
[36] Cirl, C., Wieser, A., Yadav, M., Duerr, S., Schubert, S., Fischer, H., Stappert, D., Wantia, N., Rodriguez, N., Wagner, H., Svanborg, C. and Miethke, T. (2008) Subversion of Toll-Like Receptor Signaling by a Unique Family of Bacterial Toll/Interleukin-1 Receptor Domain-Containing Proteins. Nature Medicine, 14, 399-406.
[37] Travaglione, S., Loizzo, S., Ballan, G., Fiorentini, C. and Fabbri, A. (2014) The E. coli CNF1 as a Pioneering Therapy for the Central Nervous System Diseases. Toxins (Basel), 6, 270-282.
[38] Elliott, S.J., Srinivas, S., Albert, M.J., Alam, K., Robins-Browne, R.M., Gunzburg, S.T., Mee, B.J. and Chang, B.J. (1998) Characterization of the Roles of Hemolysin and Other Toxins in Enteropathy Caused by Alpha-Hemolytic Escherichia coli Linked to Human Diarrhea. Infection and Immunity, 66, 2040-2051.
[39] Golinska, E., Tomusiak, A., Gosiewski, T., Wiecek, G., Machul, A., Mikolajczyk, D., Bulanda, M., Heczko, P.B. and Strus, M. (2013) Virulence Factors of Enterococcus Strains Isolated from Patients with Inflammatory Bowel Disease. World Journal of Gastroenterology, 19, 3562-3572.
[40] Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S.M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J.A., Smith, G. and Knight, R. (2012) Ultra-High-Throughput Microbial Community Analysis on the Illumina HiSeq and MiSeq Platforms. ISME Journal, 6, 1621-1624.
[41] Navas-Molina, J.A., Peralta-Sanchez, J.M., Gonzalez, A., McMurdie, P.J., Vazquez-Baeza, Y., Xu, Z., Ursell, L.K., Lauber, C., Zhou, H., Song, S.J., Huntley, J., Ackermann, G.L., Berg-Lyons, D., Holmes, S., Caporaso, J.G. and Knight, R. (2013) Advancing Our Understanding of the Human Microbiome Using QIIME. Methods in Enzymology, 531, 371-444.
[42] Putze, J., Hennequin, C., Nougayrede, J., Zhang, W., Homburg, S., Karch, H., Bringer, M., Fayolle, C., Carniel, E., Rabsch, W., Oelschlaeger, T.A., Oswald, E., Forestier, C., Hacker, J. and Dobrindt, U. (2009) Genetic Structure and Distribution of the Colibactin Genomic Island among Members of the Family Enterobacteriaceae. Infection and Immunity, 77, 4696-4703.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.