Modeling Operational Parameters of a Reactive Electro-Dialysis Cell for Electro-Refining Anodic Scrap Copper

Abstract

This work will create an electro-dialysis cell model that has the purpose of refining anodic scrap copper—an element that currently must be returned to the copper conversion process. The cell modeling is based on Ohm’s Law, while the resulting copper deposit morphology is studied through the thickness of the layer deposited on the surface and the electric current lines traced from the anode to the cathode. The use of the model demonstrated that it is possible to effectively predict the specific energy consumption required for the refinement of the anodic scrap copper, and the morphology of the cathode obtained, with a margin of error of 9%.

Share and Cite:

Cifuentes, G. , Hernández, J. , Manríquez, J. and Guajardo, N. (2014) Modeling Operational Parameters of a Reactive Electro-Dialysis Cell for Electro-Refining Anodic Scrap Copper. American Journal of Analytical Chemistry, 5, 1011-1019. doi: 10.4236/ajac.2014.515107.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Cifuentes, G. (2000) Theory and Praxis of Electrometallurgy (Teoría y práctica de la electrometalurgia). Class Notes, Metallurgical Department at University of Santiago of Chile, Santiago.
[2] Urra, C. (2003) Electrolytic Refining of Particulate Anodic Scrap (Refinación electrolítica de scrap anódico particulado). Titulation Work, Metallurgical Department, University of Santiago of Chile, Santiago.
[3] Davenport, G., King, M., Schlesinger, M. and Biswas, A.K. (2002) Extractive Metallurgy of Copper. 3rd Edition, Elsevier, Oxford.
[4] Cifuentes, G., Hernández, J. and Guajardo, N. (2014) Recovering Scrap Anode Copper Using Reactive Electrodialysis. American Journal of Analytical Chemistry, 5, 9.
[5] Hernández, J. (2014) Anodic Scrap Recovering Using Reactive Electrodialysis (Recuperación de Scrap anódico por electrodiálisis reactiva). M.Sc. Thesis, Metallurgical Department, University of Santiago of Chile, Santiago.
[6] Cifuentes, G., Simpson, J., Lobos, F., Briones, L. and Morales, A. (2009) Copper Electrowinning Based on Reactive Electrodialysis. Journal of the Chilean Chemical Society, 54, 334-338.
http://dx.doi.org/10.4067/S0717-97072009000400002
[7] Walsh, F. (1999) A First Course of Electrochemical Engineering (Un primer curso de Ingeniería Electroquímica). Editorial Club Universitario, San Vicente, Espana.
[8] Bockris, J. and Reddy, A. (1977) Modern Electrochemistry: An Introduction to an Interdisciplinary Area, Volume 2. 3th Edition, Plenum Rosetta Edition, New York.
[9] Introduction to COMSOL Multiphysics.
http://www.comsol.com/shared/downloads/IntroductionToCOMSOLMultiphysics.pdf
[10] Xu, T.W. (2005) Ion Exchange Membranes: State of Their Development and Perspective. Journal of Membrane Science, 263, 1-29.
http://dx.doi.org/10.1016/j.memsci.2005.05.002
[11] Baker, R.W. (2004) Membrane Technology and Applications. 2nd Edition, Membrane Technology and Research, Inc., Menlo Park, California.
http://dx.doi.org/10.1002/0470020393
[12] Davis, S.M. (2006) Electrochemical Splitting of Sodium Sulfate. M.Sc. Thesis, Georgia Institute of Technology, Atlanta, Georgia.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.