Characterization of a Novel Pseudomonas stutzeri Lipase/Esterase with Potential Application in the Production of Chiral Secondary Alcohols


The search for new enzymes is facilitated by the rapidly growing number of genome sequences from different organisms. However, the discovery of functional proteins is still time intensive and complex alignments have to be performed. Herein, a genome database search identified a new, until now undescribed, putative lipase from Pseudomonas stutzeri strain A1501. The gene was cloned and expressed as functional protein in E. coli. A biochemical characterization provided an indication that the enzyme could be classified as an esterase with an alkaline pH optimum and a temperature optimum at 50°C. The enzyme was able to perform the kinetic resolution of racemic esters and could therefore be an interesting candidate for chiral synthesis.

Share and Cite:

Lehmann, S. , Maraite, A. , Steinhagen, M. and Ansorge-Schumacher, M. (2014) Characterization of a Novel Pseudomonas stutzeri Lipase/Esterase with Potential Application in the Production of Chiral Secondary Alcohols. Advances in Bioscience and Biotechnology, 5, 1009-1017. doi: 10.4236/abb.2014.513115.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Bornscheuer, U.T. (2002) Microbial Carboxyl Esterases: Classification, Properties and Application in Biocatalysis. FEMS Microbiology Reviews, 26, 73-81.
[2] Cygler, M., Schrag, J.D., Sussman, J.L., Harel, M., Silman, I., Gentry, M.K. and Doctor, B.P. (1993) Relationship between Sequence Conservation and Three-Dimensional Structure in a Large Family of Esterases, Lipases, and Related Proteins. Protein Science, 2, 366-382.
[3] Ollis, D.L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S.M., Harel, M., Remington, S.J., Silman, I., Schrag, J., et al. (1992) The Alpha/Beta Hydrolase Fold. Protein Engineering, 5, 197-211.
[4] Brzozowski, A.M., Derewenda, U., Derewenda, Z.S., Dodson, G.G., Lawson, D.M., Turkenburg, J.P., Bjorkling, F., Huge-Jensen, B., Patkar, S.A. and Thim, L. (1991) A Model for Interfacial Activation in Lipases from the Structure of a Fungal Lipase-Inhibitor Complex. Nature, 351, 491-494.
[5] Sarda, L. and Desnuelle, P. (1958) Actions of Pancreatic Lipase on Esters in Emulsions. Biochimica et Biophysica Acta, 30, 513-521.
[6] Brady, L., Brzozowski, A.M., Derewenda, Z.S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J.P., Christiansen, L., Huge-Jensen, B., Norskov, L., et al. (1990) A Serine Protease Triad Forms the Catalytic Centre of a Triacylglycerol Lipase. Nature, 343, 767-770.
[7] Winkler, F.K., D’Arcy, A. and Hunziker, W. (1990) Structure of Human Pancreatic Lipase. Nature, 343, 771-774.
[8] Jaeger, K.E. and Eggert, T. (2002) Lipases for Biotechnology. Current Opinion in Biotechnology, 13, 390-397.
[9] Hasan, F., Shah, A.A. and Hameed, A. (2006) Industrial Applications of Microbial Lipases. Enzyme and Microbial Technology, 39, 235-251.
[10] Ansorge-Schumacher, M.B. and Thum, O. (2013) Immobilised Lipases in the Cosmetics Industry. Chemical Society Reviews, 42, 6475-6490.
[11] Turner, N.J. (2010) Deracemisation Methods. Current Opinion in Chemical Biology, 14, 115-121.
[12] Gupta, R., Gupta, N. and Rathi, P. (2004) Bacterial Lipases: An Overview of Production, Purification and Biochemical Properties. Applied Microbiology and Bbiotechnology, 64, 763-781.
[13] Soberon-Chavez, G. and Palmeros, B. (1994) Pseudomonas Lipases: Molecular Genetics and Potential Industrial Applications. Critical Reviews in Microbiology, 20, 95-105.
[14] Gilbert, E.J. (1993) Pseudomonas Lipases: Biochemical Properties and Molecular Cloning. Enzyme and Microbial Technology, 15, 634-645.
[15] Lalucat, J., Bennasar, A., Bosch, R., Garcia-Valdes, E. and Palleroni, N.J. (2006) Biology of Pseudomonas stutzeri. Microbiology and Molecular Biology Reviews, 70, 510-547.
[16] Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T.G., Bertoni, M., Bordoli, L. and Schwede, T. (2014) Swiss-Model: Modelling Protein Tertiary and Quaternary Structure Using Evolutionary Information. Nucleic Acids Research, 42, W252-W258.
[17] Arnold, K., Bordoli, L., Kopp, J. and Schwede, T. (2006) The Swiss-Model Workspace: A Web-Based Environment for Protein Structure Homology Modelling. Bioinformatics, 22, 195-201.
[18] Benkert, P., Biasini, M. and Schwede, T. (2011) Toward the Estimation of the Absolute Quality of Individual Protein Structure Models. Bioinformatics, 27, 343-350.
[19] Boston, M., Requadt, C., Danko, S., Jarnagin, A., Ashizawa, E., Wu, S., Poulose, A.J. and Bott, R. (1997) Structure and Function of Engineered Pseudomonas mendocina Lipase. In: Byron Rubin, E.A.D., Ed., Methods in Enzymology, Academic Press, Waltham, 298-317.
[20] Petersen, T.N., Brunak, S., von Heijne, G. and Nielsen, H. (2011) Signalp 4.0: Discriminating Signal Peptides from Transmembrane Regions. Nature Methods, 8, 785-786.
[21] Esposito, D. and Chatterjee, D.K. (2006) Enhancement of Soluble Protein Expression through the Use of Fusion Tags. Current Opinion in Biotechnology, 17, 353-358.
[22] Narayanan, N., Khan, M. and Chou, C.P. (2011) Enhancing Functional Expression of Heterologous Burkholderia Lipase in Escherichia coli. Molecular Biotechnology, 47, 130-143.
[23] Liu, D., Schmid, R. D. and Rusnak, M. (2006) Functional Expression of Candida antarctica Lipase B in the Escherichia coli Cytoplasm—A Screening System for a Frequently Used Biocatalyst. Applied Microbiology and Biotechnology, 72, 1024-1032.
[24] Vorderwulbecke, T., Kieslich, K. and Erdmann, H. (1992) Comparison of Lipases by Different Assays. Enzyme and Microbial Technology, 14, 631-639.
[25] Chahinian, H., Nini, L., Boitard, E., Dubes, J.P., Comeau, L.C. and Sarda, L. (2002) Distinction between Esterases and Lipases: A Kinetic Study with Vinyl Esters and Tag. Lipids, 37, 653-662.
[26] Lopes, D.B., Fraga, L.P., Fleuri, L.F. and Macedo, G.A. (2011) Lipase and Esterase—To What Extent Can This Classification Be Applied Accurately? Science and Technology of Food, 31, 608-613.
[27] Liu, H.L. and Anthonsen, T. (2002) Enantiopure Building Blocks for Chiral Drugs from Racemic Mixtures of Secondary Alcohols by Combination of Lipase Catalysis and Mitsunobu Esterification. Chirality, 14, 25-27.
[28] Yamamoto, T., Shibata, N., Takashima, M., Nakamura, S., Toru, T., Matsunaga, N. and Hara, H. (2008) Enzymatic Resolution and Evaluation of Enantiomers of Cis-5[Prime or Minute]-Hydroxythalidomide. Organic & Biomolecular Chemistry, 6, 1540-1543.
[29] Maraite, A., Hoyos, P., Carballeira, J.D., Cabrera, A.C., Ansorge-Schumacher, M.B. and Alcantara, A.R. (2013) Lipase from Pseudomonas stutzeri: Purification, Homology Modelling and Rational Explanation of the Substrate Binding Mode. Journal of Molecular Catalysis B-Enzymatic, 87, 88-98.
[30] Hoyos, P., Pace, V., Sinisterra, J.V. and Alcántara, A.R. (2011) Chemoenzymatic Synthesis of Chiral Unsymmetrical Benzoin Esters. Tetrahedron, 67, 7321-7329.
[31] Parida, S. and Dordick, J.S. (1991) Substrate Structure and Solvent Hydrophobicity Control Lipase Catalysis and Enantioselectivity in Organic Media. Journal of the American Chemical Society, 113, 2253-2259.
[32] Palomo, J.M., Fernandez-Lorente, G., Mateo, C., Ortiz, C., Fernandez-Lafuente, R. and Guisan, J.M. (2002) Modulation of the Enantioselectivity of Lipases via Controlled Immobilization and Medium Engineering: Hydrolytic Resolution of Mandelic Acid Esters. Enzyme and Microbial Technology, 31, 775-783.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.