[1]
|
Aharonov, Y., Davidovich, L. and Zagury, N. (1993) Quantum Random Walks. Physical Review A, 48, 1687.
http://dx.doi.org/10.1103/PhysRevA.48.1687
|
[2]
|
Hughes, B.D. (1995) Volume 1: Random Walks and Random Environments. In: Random Walks, Oxford University Press, Oxford.
|
[3]
|
Ambainis, A., Bach, E., Nayak, A., Vishwanath, A. and Watrous, J. (2001) One Dimensional Quantum Walks. Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing, Heraklion, 6-8 July 2001, 50.
|
[4]
|
Nayak, A. and Vishwanath, A. (2000) Quantum Walk on the Line. arXiv: Quant-ph/0010117.
|
[5]
|
Childs, A.M., Farhi, E. and Gutmann, S. (2002) An Example of the Difference between Quantum and Classical Random Walks. Quantum Information Processing, 1, 35-43. http://dx.doi.org/10.1023/A:1019609420309
|
[6]
|
Fahri, E. and Gutmann, S. (1998) Quantum Computation and Decision Trees. Physical Review A, 58, 915.
|
[7]
|
Meyer, D. (1996) From Quantum Cellular Automata to Quantum Lattice Gases. Journal of Statistical Physics, 85, 551-574. http://dx.doi.org/10.1007/BF02199356
|
[8]
|
Strauch, F.W. (2006) Connecting the Discrete- and Continuous-Time Quantum Walks. Physical Review A, 74, Article ID: 030301. http://dx.doi.org/10.1103/PhysRevA.74.030301
|
[9]
|
Chandrashekar, C.M. (2008) Generic Quantum Walk Using a Coin-Embedded Shift Operator. Physical Review A, 78, Article ID: 052309. http://dx.doi.org/10.1103/PhysRevA.78.052309
|
[10]
|
Childs, A.M. (2010) On the Relationship between Continuous- and Discrete-Time Quantum Walk. Communications in Mathematical Physics, 294, 581-603. http://dx.doi.org/10.1007/s00220-009-0930-1
|
[11]
|
Aharonov, D., et al. (2001) Quantum Walks on Graphs. Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing, Heraklion, 6-8 July 2001, 50.
|
[12]
|
Bach, E., Coppersmith, S., Goldschen, M.P., Joynt, R. and Watrous, J. (2004) One Dimensional Quantum Walks with Absorbing Boundaries. Journal of Computer and System Sciences, 69, 562-592.
http://dx.doi.org/10.1016/j.jcss.2004.03.005
|
[13]
|
Dür, W., Raussendorf, R., Kendon, V.M. and Briegel, H.-J. (2002) Quantum Random Walks in Optical Lattices. Physical Review A, 66, Article ID: 052139. http://dx.doi.org/10.1103/PhysRevA.66.052319
|
[14]
|
Kempe, J. (2005) Quantum Random Walks Hit Exponentially Faster. Probability Theory and Related Fields, 133, 215-235. http://dx.doi.org/10.1007/s00440-004-0423-2
|
[15]
|
Konno, N. (2005) A New Type of Limit Theorems for the One-Dimensional Quantum Random Walk. Journal of the Mathematical Society of Japan, 57, 1179-1195. http://dx.doi.org/10.2969/jmsj/1150287309
|
[16]
|
Konno, N., Namiki, T. and Soshi, T. (2004) Symmetry of Distribution for the One-Dimensional Hadamard Walk. Interdisciplinary Information Sciences, 10, 11-22. http://dx.doi.org/10.4036/iis.2004.11
|
[17]
|
Mackay, T.D., Bartlett, S.D., Stephenson, L.T. and Sanders, B.C. (2002) Quantum Walks in Higher Dimensions. Journal of Physics A: Mathematical and General, 35, 2745-2753. http://dx.doi.org/10.1088/0305-4470/35/12/304
|
[18]
|
Moore, C. and Russell, A. (2002) Quantum Walks on the Hypercubes, Randomization and Approximation Techniques in Computer Science. Lecture Notes in Computer Science, 2483, 164-178.
|
[19]
|
Travaglione, B.C. and Milburn, G.J. (2002) Implementing the Quantum Random Walk. Physical Review A, 65, Article ID: 032310. http://dx.doi.org/10.1103/PhysRevA.65.032310
|
[20]
|
Yamasaki, T., Kobayashi, H. and Imai, H. (2003) Analysis of Absorbing Times of Quantum Walks. Physical Review A, 68, Article ID: 012302. http://dx.doi.org/10.1103/PhysRevA.68.012302
|
[21]
|
Aharonov, D., Ambainis, A., Kempe, J. and Vazirani, U. (2001) Quantum Walks on Graphs. Proceedings of the 33rd STOC, New York, 50-59.
|
[22]
|
Shenvi, N., Kempe, J. and Whaley, K. (2003) Quantum Random-Walk Search Algorithm. Physical Review A, 67, Article ID: 052307. http://dx.doi.org/10.1103/PhysRevA.67.052307
|
[23]
|
Ambainis, A. (2007) Quantum Walk Algorithm for Element Distinctness. SIAM Journal on Computing, 37, 210-239.
http://dx.doi.org/10.1137/S0097539705447311
|
[24]
|
Childs, A. and Goldstone, J. (2004) Spatial Search by Quantum Walk. Physical Review A, 70, Article ID: 022314.
http://dx.doi.org/10.1103/PhysRevA.70.022314
|
[25]
|
Kendon, V. (2006) A Random Walk Approach to Quantum Algorithms. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364, 3407-3422. http://dx.doi.org/10.1098/rsta.2006.1901
|
[26]
|
Gabris, A., Kiss, T. and Jex, I. (2007) Scattering Quantum Random-Walk Search with Errors. Physical Review A, 76, Article ID: 062315. http://dx.doi.org/10.1103/PhysRevA.76.062315
|
[27]
|
Magniez, F., Nayak, A., Roland, J. and Santha, M. (2007) Search via Quantum Walk. Proceedings of the 33rd STOC, New York, 575-584.
|
[28]
|
Reitzner, D., Hillery, M., Feldman, E. and Buzek, V. (2009) Quantum Searches on Highly Symmetric Graphs. Physical Review A, 79, Article ID: 012323. http://dx.doi.org/10.1103/PhysRevA.79.012323
|
[29]
|
Potocek, V., Gabris, A., Kiss, T. and Jex, I. (2009) Optimized Quantum Random-Walk Search Algorithms on the Hypercube. Physical Review A, 79, Article ID: 012325. http://dx.doi.org/10.1103/PhysRevA.79.012325
|
[30]
|
Hein, B. and Tanner, G. (2009) Quantum Search Algorithms on the Hypercube. Journal of Physics A: Mathematical and Theoretical, 42, Article ID: 085303. http://dx.doi.org/10.1088/1751-8113/42/8/085303
|
[31]
|
Hein, B. and Tanner, G. (2010) Quantum Search Algorithms on a Regular Lattice. Physical Review A, 82, Article ID: 012326. http://dx.doi.org/10.1103/PhysRevA.82.012326
|
[32]
|
Travaglione, B.C. and Milburn, G.J. (2002) Implementing the Quantum Random Walk. Physical Review A, 65, Article ID: 032310. http://dx.doi.org/10.1103/PhysRevA.65.032310
|
[33]
|
Dur, W., Raussendorf, R., Kendon, V. and Briegel, H.-J. (2002) Quantum Walks in Optical Lattices. Physical Review A, 66, Article ID: 052319. http://dx.doi.org/10.1103/PhysRevA.66.052319
|
[34]
|
Du, J., Li, H., Xu, X., Shi, M., Wu, J., Zhou, X. and Han, R. (2003) Experimental Implementation of Quantum Random-Walk Algorithm. Physical Review A, 67, Article ID: 042316. http://dx.doi.org/10.1103/PhysRevA.67.042316
|
[35]
|
Ryan, C.A., Laforest, M., Boileau, J.C. and Laflamme, R. (2005) Experimental Implementation of a Discrete-Time Quantum Random Walk on an NMR Quantum-Information Processor. Physical Review A, 72, Article ID: 062317.
http://dx.doi.org/10.1103/PhysRevA.72.062317
|
[36]
|
Xue, P., Sanders, B.C., Blais, A. and Lalumiere, K. (2008) Quantum Walks on Circles in Phase Space via Superconducting Circuit Quantum Electrodynamics. Physical Review A, 78, Article ID: 042334.
http://dx.doi.org/10.1103/PhysRevA.78.042334
|
[37]
|
Witthaut, D. (2010) Quantum Walks and Quantum Simulations with Bloch-Oscillating Spinor Atoms. Physical Review A, 82, Article ID: 033602. http://dx.doi.org/10.1103/PhysRevA.82.033602
|
[38]
|
Schreiber, A., Cassemiro, K.N., Potocek, V., Gabris, A., Mosley, P.J., Andersson, E., Jex, I. and Silberhorn, C. (2010) Photons Walking the Line: A Quantum Walk with Adjustable Coin Operations. Physical Review Letters, 104, Article ID: 050502. http://dx.doi.org/10.1103/PhysRevLett.104.050502
|
[39]
|
Xue, P., Sanders, B.C. and Leibfried, D. (2009) Quantum Walk on a Line for a Trapped Ion. Physical Review Letters, 103, Article ID: 183602. http://dx.doi.org/10.1103/PhysRevLett.103.183602
|
[40]
|
Zhao, Z., Du, J., Li, H., Yang, T., Chen, Z.-B. and Pan, J.-W. (2002) Implement Quantum Random Walks with Linear Optics Elements. arXiv: Quant-ph/0212149.
|
[41]
|
Konno, N. (2002) Quantum Random Walks in One Dimension. Quantum Information Processing, 1, 345-354.
http://dx.doi.org/10.1023/A:1023413713008
|
[42]
|
Venagas-Andraca, S.E., Ball, J., Burnett, K. and Bose, S. (2005) Quantum Walks with Entangle Coins. New Journal of Physics, 7, 221. http://dx.doi.org/10.1088/1367-2630/7/1/221
|
[43]
|
Bednarska, M., Grudka, A., Kurzynski, P., Luczak, T. and Wojcik, A. (2003) Quantum Walks on Cycles. Physics Letters A, 317, 21-25. http://dx.doi.org/10.1016/j.physleta.2003.08.023
|
[44]
|
Omar, Y., Paunkovic, N., Sheridian, L. and Bose, S. (2006) Quantum Walk on a Line with Two Entangled Particles. Physical Review A, 74, Article ID: 042304. http://dx.doi.org/10.1103/PhysRevA.74.042304
|
[45]
|
Oliveira, A., Portugal, R. and Donangelo, R. (2006) Decoherence in Two Dimensional Quantum Walks. Physical Review A, 74, Article ID: 012312.
|
[46]
|
Watabe, K., Kobayashi, N., Katori, M. and Konno, N. (2008) Limit Distributions of Two Dimensional Quantum Walks. Physical Review A, 77, Article ID: 062331. http://dx.doi.org/10.1103/PhysRevA.77.062331
|
[47]
|
Adamczak, W., Andrew, K., Bergen, L., Ethier, D., Hernberg, P., Lin, J. and Tamon, C. (2007) Non-Uniform Mixing of Quantum Walk on Cycles. International Journal of Quantum Information, 5, 781.
http://dx.doi.org/10.1142/S0219749907003195
|
[48]
|
Mackay, T.D., Bartlett, S., Stephenson, L. and Sanders, B. (2002) Quantum Walks in Higher Dimensions. Journal of Physics A, 35, 2745-2753. http://dx.doi.org/10.1088/0305-4470/35/12/304
|
[49]
|
Carneiro, I., Loo, M., Xu, X., Girerd, M., Kendon, V. and Knight, P. (2005) Entanglement in Coined Quantum Walks on Regular Graphs. New Journal of Physics, 7, 156. http://dx.doi.org/10.1088/1367-2630/7/1/156
|
[50]
|
Romanelli, A., Sicardi-Schifino, A.C., Siri, R., Abal, G., Auyuanet, A. and Donangelo, R. (2004) Quantum Random Walk on the Line as Markovian Process. Physica A: Statistical Mechanics and Its Applications, 338, 395-405.
http://dx.doi.org/10.1016/j.physa.2004.02.061
|
[51]
|
Venegas-Andraca, S. (2012) Quantum Walks: A Comprehensive Review. Quantum Information Processing, 11, 1015-1106. http://dx.doi.org/10.1007/s11128-012-0432-5
|
[52]
|
Shikano, Y. (2013) From Discrete Time Quantum Walk to Continuous Time Quantum Walk in Limit Distribution. Journal of Computational and Theoretical Nanoscience, 10, 1558-1570. http://dx.doi.org/10.1166/jctn.2013.3097
|
[53]
|
Kempe, J. (2003) Quantum Random Walks: An Introductory Overview. Contemporary Physics, 44, 307-327.
http://dx.doi.org/10.1080/00107151031000110776
|
[54]
|
Kendon, V. (2007) Decoherence in Quantum Walks: A Review. Mathematical Structures in Computer Science, 17, 1169-1220.
|
[55]
|
Venegas-Andracas, S.E. (2008) Quantum Walks for Computer Scientists. Morgan and Claypool Publishers.
http://dx.doi.org/10.2200/S00144ED1V01Y200808QMC001
|
[56]
|
Konno, N. (2008) Quantum Walks. In: Franz, U. and Schurmann, M., Eds., Quantum Potential Theory, Springer-Verlag, Heidelberg, 309-452.
|
[57]
|
Konno, N. (2005) A Path Integral Approach for Disordered Quantum Walks in One Dimensions. Fluctuation and Noise Letters, 5, No. 4. http://dx.doi.org/10.1142/S0219477505002987
|
[58]
|
Mackay, T.D., Bartlett, S.D., Stephanson, L.T. and Sanders, B.C. (2002) Quantum Walks in Higher Dimensions. Journal of Physics A: Mathematical and General, 35, 2745-2753.
|
[59]
|
Schijven, P, Kohlberger, J., Blumen, A. and Muelken, O. (2011) Transport Efficiency in Topologically Disordered Networks with Environmentally Induced Diffusion. Journal of Physics A: Mathematical and Theoretical, 45, Article ID: 215003.
|
[60]
|
Lavicka, H., Potocek, V., Kiss, T., Lutz, E. and Jex, I. (2011) Quantum Walk with Jumps. European Physical Journal D, 64, 119-129. http://dx.doi.org/10.1140/epjd/e2011-20138-8
|
[61]
|
Abasto, D.F., Mohseni, M., Lloyd, S. and Zanardi, P. (2012) Exciton Diffusion Length in Complex Quantum Systems: The Effects of Disorder and Environmental Fluctuations on Symmetry-Enhanced Supertransfer. Philosophical Transactions of the Royal Society A, 370, 3750-3770. http://dx.doi.org/10.1098/rsta.2011.0213
|
[62]
|
Obuse, H. and Kawakami, N. (2011) Topological Phases and Delocalization of Quantum Walks in Random Environments. Physical Review B, 84, Article ID: 195139. http://dx.doi.org/10.1103/PhysRevB.84.195139
|
[63]
|
Chandrashekar, C.M. (2011) Quantum Walk through Lattice with Temporal, Spatial and Fluctuating Disordered Operations. arXiv:1103.2704.
|
[64]
|
Wootton, J. and Pachos, J. (2011) Bringing Order through Disorder: Localization of Errors in Topological Quantum Memories. Physical Review Letters, 107, Article ID: 030503. http://dx.doi.org/10.1103/PhysRevLett.107.030503
|
[65]
|
Schreiber, A., Cassemiro, K.N., Potocek, V., Gábris, A., Jex, I. and Silberhorn, C. (2011) Decoherence and Disorder in Quantum Walks: From Ballistic Spread to Localization. Physical Review Letters, 106, Article ID: 180403.
http://dx.doi.org/10.1103/PhysRevLett.106.180403
|
[66]
|
Ahlbrecht, A., Scholz, V.B. and Werner, A.H. (2011) Disordered Quantum Walks in One Lattice Dimension. Journal of Mathematical Physics, 52, Article ID: 102201. http://dx.doi.org/10.1063/1.3643768
|
[67]
|
Chandrashekar, C.M. (2011) Disordered Quantum Walk-Induced Localization of a Bose-Einstein Condensate. Physical Review A, 83, Article ID: 022320. http://dx.doi.org/10.1103/PhysRevA.83.022320
|
[68]
|
Leung, G., Knott, P., Bailey, J. and Kendon, V. (2010) Coined Quantum Walks on Percolation Graphs. New Journal of Physics, 12, Article ID: 123018. http://dx.doi.org/10.1088/1367-2630/12/12/123018
|
[69]
|
Monthus, C. and Garel, T. (2009) An Eigenvalue Method to Compute the Largest Relaxation Time of Disordered Systems. Journal of Statistical Mechanics: Theory and Experiment, 2009, 12017.
http://dx.doi.org/10.1088/1742-5468/2009/12/P12017
|
[70]
|
Yin, Y., Katsanos, D.E. and Evangelou, S.N. (2008) Quantum Walks on a Random Environment. Physical Review A, 77, Article ID: 022302. http://dx.doi.org/10.1103/PhysRevA.77.022302
|
[71]
|
Mülken, O., Bierbaum, V. and Blumen, A. (2007) Localization of Coherent Exciton Transport in Phase Space. Physical Review E, 75, Article ID: 031121. http://dx.doi.org/10.1103/PhysRevE.75.031121
|
[72]
|
Iglói, F., Karevski, D. and Rieger, H. (1998) Comparative Study of the Critical Behavior in One-Dimensional Random and Aperiodic Environments. The European Physical Journal B: Condensed Matter and Complex Systems, 5, 613-625.
http://dx.doi.org/10.1007/s100510050486
|
[73]
|
Godsil, C. and Severini, S. (2010) Control by Quantum Dynamics on Graphs. Physical Review A, 81, Article ID: 052316. http://dx.doi.org/10.1103/PhysRevA.81.052316
|
[74]
|
Machida, T. (2013) Limit Distribution with a Combination of Density Functions for a 2-State Quantum Walk. Journal of Computational and Theoretical Nanoscience, 10, 1571-1578. http://dx.doi.org/10.1166/jctn.2013.3090
|
[75]
|
Shikano, Y. and Katsura, H. (2010) Localization and Fractality in Inhomogeneous Quantum Walks with Self-Duality. Physical Review E, 82, Article ID: 031122. http://dx.doi.org/10.1103/PhysRevE.82.031122
|
[76]
|
Linden, N. and Sharam, J. (2009) Inhomogeneous Quantum Walks. Physical Review A, 80, Article ID: 052327.
http://dx.doi.org/10.1103/PhysRevA.80.052327
|
[77]
|
Konno, N., ?uczak, T. and Segawa, E. (2013) Limit Measures of Inhomogeneous Discrete-Time Quantum Walks in One Dimension. Quantum Information Processing, 12, 33-53. http://dx.doi.org/10.1007/s11128-011-0353-8
|
[78]
|
Konno, N. (2009) One-Dimensional Discrete-Time Quantum Walks on Random Environments. Quantum Information Processing, 8, 387-399.
|
[79]
|
Konno, N. (2010) Localization of an Inhomogeneous Discrete-Time Quantum Walk on the Line. Quantum Information Processing, 9, 405-418.
|
[80]
|
Ampadu, C. (2012) On an Inhomogeneous Quantum Walk. Unpublished.
|
[81]
|
Villagra, M., Nakanishi, M., Yamashita, S. and Nakashima, Y. (2012) Quantum Walk on the Line with Phase Parameters. IEICE Transactions on Information and Systems, E95.D, 722-730.
|
[82]
|
Ampadu, C. (2011) The Parametrized Grover Walk on the Line. Unpublished.
|
[83]
|
Ampadu, C. (2012) Asymptotic Entanglement in the Parametrized Hadamard Walk. International Journal of Quantum Information, 10, Article ID: 1250066. http://dx.doi.org/10.1142/S0219749912500669
|
[84]
|
Ampadu, C. (2012) Limit Theorem for the Parametrized Grover Walk on the Line. Proceedings of AIP Conference, Vaxjo, 11-14 June 2012, 343.
|
[85]
|
Ampadu, C. (2012) On a Parametrized Quantum Walk in Random Environments. Unpublished.
|
[86]
|
McGettrick, M. (2010) One Dimensional Quantum Walks with Memory. Quantum Information & Computation, 10, 509-524.
|
[87]
|
Konno, N. and Machida, T. (2010) Limit Theorems for Quantum Walks with Memory. Quantum Information and Computation, 10, 1004-1017.
|
[88]
|
Inui, N., Konno, N. and Segawa, E. (2005) One-Dimensional Three-State Quantum Walk. Physical Review E, 72, Article ID: 056112. http://dx.doi.org/10.1103/PhysRevE.72.056112
|
[89]
|
Brun, T.A., Carteret, H.A. and Ambainis, A. (2003) Quantum Walks Driven by Many Coins. Physical Review A, 67, Article ID: 052317. http://dx.doi.org/10.1103/PhysRevA.67.052317
|
[90]
|
Venegas-Andreca, S.E., Ball, J.L., Burnett, K. and Bose, S. (2005) Quantum Walks with Entangled Coins. New Journal of Physics, 7, 221.
|
[91]
|
Segawa, E. and Konno, N. (2008) Limit Theorems for Quantum Walks Driven by Many Coins. International Journal of Quantum Information, 6, 1231-1243.
|
[92]
|
Ampadu, C. (2011) Limit Theorems for the Grover Walk without Memory. arXiv:1108.4149.
|
[93]
|
Brun, T.A., Carteret, H.A. and Ambainis, A. (2003) Quantum Random Walks with Decoherent Coins. Physical Review A, 67, Article ID: 032304. http://dx.doi.org/10.1103/PhysRevA.67.032304
|
[94]
|
Liu, C. and Pentulante, N. (2011) Asymptotic Evolution of Quantum Walks on the N Cycle Subject to Decoherence on Both the Coin and Position Degrees of Freedom. Physical Review A, 84, Article ID: 012317.
http://dx.doi.org/10.1103/PhysRevA.84.012317
|
[95]
|
Schreiber, A., Cassemiro, K.N., Potocek, V., Gábris, A., Jex, I. and Silberhorn, C. (2011) Decoherence and Disorder in Quantum Walks: From Ballistic Spread to Localization. Physical Review Letters, 106, Article ID: 180403. http://dx.doi.org/10.1103/PhysRevLett.106.180403
|
[96]
|
Romanelli, A. and Hernandez, G. (2011) Quantum Walks: Decoherence and Coin Flipping Games. Physica A: Statistical Mechanics and Its Applications, 390, 1209-1220.
|
[97]
|
Srikanth, R., Banerjee, S. and Chandrashekar, C.M. (2010) Quantumness in Decoherent Quantum Walk Using Measurement-Induced Disturbance. Physical Review A, 81, Article ID: 062123.
http://dx.doi.org/10.1103/PhysRevA.81.062123
|
[98]
|
Broome, M.A., Fedrizzi, A., Lanyon, B.P., Kassal, I., Aspuru-Guzik, A. and White, A.G. (2010) Discrete Single-Photon Quantum Walks with Tunable Decoherence. Physical Review Letters, 104, Article ID: 153602.
http://dx.doi.org/10.1103/PhysRevLett.104.153602
|
[99]
|
Annabestani, M., Akhtarshenas, S.J. and Abolhassani, M.R. (2010) Tunneling Effects in a One-Dimensional Quantum Walk. arXiv: 1004.4352.
|
[100]
|
Gönülol, M., Aydiner, E. and Müstecapl?oglu, Ö.E. (2009) Decoherence in Two-Dimensional Quantum Random Walks with Traps. Physical Review A, 80, Article ID: 022336. http://dx.doi.org/10.1103/PhysRevA.80.022336
|
[101]
|
Liu, C. and Petulante, N. (2010) Quantum Random Walks on the N Cycle Subject to Decoherence on the Coin Degree of Freedom. Physical Review E, 81, Article ID: 031113. http://dx.doi.org/10.1103/PhysRevE.81.031113
|
[102]
|
Xue, P., Sanders, B.C., Blais, A. and Lalumière, K. (2008) Quantum Walks on Circles in Phase Space via Superconducting Circuit Quantum Electrodynamics. Physical Review A, 78, Article ID: 042334.
http://dx.doi.org/10.1103/PhysRevA.78.042334
|
[103]
|
Abal, G., Donangelo, R., Severo, F. and Siri, R. (2007) Decoherent Quantum Walks Driven by a Generic Coin Operation. Physica A, 387, 335-345. http://dx.doi.org/10.1016/j.physa.2007.08.058
|
[104]
|
Maloyer, O. and Kendon, V. (2007) Decoherence vs. Entanglement in Coined Quantum Walks. New Journal of Physics, 9, 87. http://dx.doi.org/10.1088/1367-2630/9/4/087
|
[105]
|
Kosík, J., Buzek, V. and Hillery, M. (2006) Quantum Walks with Random Phase Shifts. Physical Review A, 74, Article ID: 022310. http://dx.doi.org/10.1103/PhysRevA.74.022310?
|
[106]
|
Salimi, S. and Radgohar, R. (2006) Mixing and Decoherence in Continuous-Time Quantum Walks on Cycles. Quantum Information and Computation, 6, 263-276.
|
[107]
|
Solenov, D. and Fedichkin, L. (2006) Non-Unitary Quantum Walks on Hyper-Cycles. Physical Review A, 73, Article ID: 012308. http://dx.doi.org/10.1103/PhysRevA.73.012308
|
[108]
|
Ryan, C.A., Laforest, M., Boileau, J.C. and Laflamme, R. (2005) Experimental Implementation of Discrete Time Quantum Random Walk on an NMR Quantum Information Processor. Physical Review A, 72, Article ID: 062317.
http://dx.doi.org/10.1103/PhysRevA.72.062317
|
[109]
|
Algaic, G. and Russell, A. (2005) Decoherence in Quantum Walks on the Hypercube. Physical Review A, 72, Article ID: 062304. http://dx.doi.org/10.1103/PhysRevA.72.062304
|
[110]
|
Brun, T.A., Carteret, H.A. and Ambainis, A. (2003) The Quantum to Classical Transition for Random Walks. Physical Review Letters, 91, Article ID: 130602. http://dx.doi.org/10.1103/PhysRevLett.91.130602
|
[111]
|
Lopez, C.C. and Paz, J.P. (2003) Phase-Space Approach to the Study of Decoherence in Quantum Walks. Physical Review A, 68, Article ID: 052305. http://dx.doi.org/10.1103/PhysRevA.68.052305
|
[112]
|
Dür, W., Raussendorf, R., Kendon, V.M. and Briegel, H.-J. (2002) Quantum Random Walks in Optical Lattices. Physical Review A, 66, Article ID: 052319. http://dx.doi.org/10.1103/PhysRevA.66.052319
|
[113]
|
Solenov, D. and Fedichkin, L. (2006) Continuous-Time Quantum Walks on a Cycle Graph. Physical Review A, 73, Article ID: 012313. http://dx.doi.org/10.1103/PhysRevA.73.012313
|
[114]
|
Yin, Y., Katsanos, D.E. and Evangelou, S.N. (2008) Quantum Walks on a Random Environment. Physical Review A, 77, Article ID: 022302. http://dx.doi.org/10.1103/PhysRevA.77.022302
|
[115]
|
Annabestani, M., Akhtarshenas, S.J. and Abolhassani, M.R. (2010) Decoherence in a One-Dimensional Quantum Walk. Physical Review A, 81, Article ID: 032321. http://dx.doi.org/10.1103/PhysRevA.81.032321
|
[116]
|
Romanelli, A., Siri, R., Abal, G., Auyuanet, A. and Donangelo, R. (2005) Decoherence in the Quantum Walk on the Line. Physica A: Statistical Mechanics and Applications, 347, 137-152.
|
[117]
|
Romanelli, A., Schifino, A.C.S., Abal, G., Siri, R. and Donangelo, R. (2003) Markovian Behavior and Constrained Maximization of the Entropy in Chaotic Quantum Systems. Physics Letters A, 313, 325-329.
|
[118]
|
Romanelli, A., Sicardi-Schifino, A.C., Siri, R., Abal, G., Auyuanet, A. and Donangelo, R. (2004) Quantum Random Walk on the Line as a Markovian Process. Physica A: Statistical Mechanics and Applications, 338, 395-405.
|
[119]
|
Ampadu, C. (2012) Brun-Type Formalism for Decoherence in Two Dimensional Quantum Walks. Communications in Theoretical Physics, 57, 41-55.
|
[120]
|
Fan, S.M., Feng, Z.Y., Xiong, S. and Yang, W.-S. (2011) Convergence of Quantum Random Walks with Decoherence. Physical Review A, 84, Article ID: 042317. http://dx.doi.org/10.1103/PhysRevA.84.042317
|
[121]
|
Correa, L.A., Valido, A.A. and Alonso, D. (2012) Asymptotic Discord and Entanglement of Non-Resonant Harmonic Oscillators in an Equilibrium Environment. Physical Review A, 86, Article ID: 012110.
http://dx.doi.org/10.1103/PhysRevA.86.012110
|
[122]
|
Liu, C. (2012) Asymptotic Distributions of Quantum Walks on the Line with Two Entangled Coin. Quantum Information Processing, 11, 1193-1205. http://dx.doi.org/10.1007/s11128-012-0361-3
|
[123]
|
Jakóbczyk, L., Olkiewicz, R. and Zaba, M. (2011) Asymptotic Entanglement of Two Atoms in Squeezed Light Field. Physical Review A, 83, Article ID: 062322. http://dx.doi.org/10.1103/PhysRevA.83.062322
|
[124]
|
Benatti, F. (2011) Asymptotic Entanglement and Lindblad Dynamics: A Perturbative Approach. Journal of Physics A: Mathematical and Theoretical, 44, Article ID: 155303. http://dx.doi.org/10.1088/1751-8113/44/15/155303
|
[125]
|
Salimi, S. and Yosefjani, R. (2012) Asymptotic Entanglement in 1D Quantum Walks with a Time-Dependent Coined. International Journal of Modern Physics B, 26, Article ID: 1250112. http://dx.doi.org/10.1142/S0217979212501123
|
[126]
|
Benatti, F. (2011) Three Qubits in a Symmetric Environment: Dissipatively Generated Asymptotic Entanglement. Annals of Physics, 326, 740-753. http://dx.doi.org/10.1016/j.aop.2010.09.006
|
[127]
|
Leung, D., Mancinska, L., Matthews, W., Ozols, M. and Roy, A. (2012) Entanglement Can Increase Asymptotic Rates of Zero-Error Classical Communication over Classical Channels. Communications in Mathematical Physics, 311, 97-111. http://dx.doi.org/10.1007/s00220-012-1451-x
|
[128]
|
Drumond, R.C., Souza, L.A.M. and Cunha, M.T. (2010) Asymptotic Entanglement Dynamics Phase Diagrams for Two Electromagnetic Field Modes in a Cavity. Physical Review A, 82, Article ID: 042302.
http://dx.doi.org/10.1103/PhysRevA.82.042302
|
[129]
|
Gütschow, J., Uphoff, S., Werner, R.F. and Zimborás, Z. (2010) Time Asymptotics and Entanglement Generation of Clifford Quantum Cellular Automata. Journal of Mathematical Physics, 51, Article ID: 015203.
http://dx.doi.org/10.1063/1.3278513
|
[130]
|
Annabestani, M., Abolhasani, M.R. and Abal, G. (2010) Asymptotic Entanglement in a Two-Dimensional Quantum Walk. Journal of Physics A: Mathematical and Theoretical, 43, Article ID: 075301.
http://dx.doi.org/10.1088/1751-8113/43/7/075301
|
[131]
|
Drumond, R. and Cunha, M. (2009) Asymptotic Entanglement Dynamics and Geometry of Quantum States. Journal of Physics A: Mathematical and Theoretical, 42, Article ID: 285308. http://dx.doi.org/10.1088/1751-8113/42/28/285308
|
[132]
|
Pan, Q. and Jing, J. (2008) Hawking Radiation, Entanglement and Teleportation in Background of an Asymptotically Flat Static Black Hole. Physical Review D, 78, Article ID: 065015. http://dx.doi.org/10.1103/PhysRevD.78.065015
|
[133]
|
Isar, A. (2008) Asymptotic Entanglement in Open Quantum Systems. International Journal of Infectious Diseases, 6, 689-694. http://dx.doi.org/10.1142/S0219749908003967
|
[134]
|
Isar, A. (2007) Decoherence and Asymptotic Entanglement in Open Quantum Dynamics. Journal of Russian Laser Research, 28, 439-452. http://dx.doi.org/10.1007/s10946-007-0033-4
|
[135]
|
Abal, G., et al. (2006) Asymptotic Entanglement in the Discrete-Time Quantum Walk. Annals of the 1st Workshop on Quantum Computation and Information, Universidade Católica de Pelotas, 189-200.
|
[136]
|
Bowen, G. and Datta, N. (2008) Asymptotic Entanglement Manipulation of Bipartite Pure States. IEEE Transaction on Information Theory, 54, 3677-3686. http://dx.doi.org/10.1109/TIT.2008.926377
|
[137]
|
Benatti, F. and Floreanini, R. (2006) Asymptotic Entanglement of Two Independent Systems in a Common Bath. International Journal of Quantum Information, 4, 395. http://dx.doi.org/10.1142/S0219749906001864
|
[138]
|
Hostens, E., Dehaene, J. and De Moor, B. (2006) Asymptotic Adaptive Bipartite Entanglement Distillation Protocol. Physical Review A, 73, Article ID: 062337. http://dx.doi.org/10.1103/PhysRevA.73.062337
|
[139]
|
Ishizaka, S. and Plenio, M.B. (2005) Multi-Particle Entanglement under Asymptotic Positive Partial Transpose Preserving Operations. Physical Review A, 72, Article ID: 042325. http://dx.doi.org/10.1103/PhysRevA.72.042325
|
[140]
|
Duan, R.Y., Feng, Y. and Ying, M.S. (2005) Entanglement-Assisted Transformation Is Asymptotically Equivalent to Multiple-Copy Transformation. Physical Review A, 72, Article ID: 024306.
http://dx.doi.org/10.1103/PhysRevA.72.024306
|
[141]
|
Childs, A.M., Leung, D.W., Verstraete, F. and Vidal, G. (2003) Asymptotic Entanglement Capacity of the Ising and Anisotropic Heisenberg Interactions. Quantum Information and Computation, 3, 97-105.
|
[142]
|
Horodecki, M., Sen(De), A. and Sen, U. (2003) Rates of Asymptotic Entanglement Transformations for Bipartite Mixed States: Maximally Entangled States Are Not Special. Physical Review A, 67, Article ID: 062314.
http://dx.doi.org/10.1103/PhysRevA.67.062314
|
[143]
|
Audenaert, K., De Moor, B., Vollbrecht, K.G.H. and Werner, R.F. (2002) Asymptotic Relative Entropy of Entanglement for Orthogonally Invariant States. Physical Review A, 66, Article ID: 032310.
http://dx.doi.org/10.1103/PhysRevA.66.032310
|
[144]
|
Vidal, G. (2002) On the Continuity of Asymptotic Measures of Entanglement. arXiv:quant-ph/0203107.
|
[145]
|
Hwang, W.-Y. and Matsumoto, K. (2002) Entanglement Measures with Asymptotic Weak-Monotonicity as Lower (Upper) Bound for the Entanglement of Cost (Distillation). Physics Letters A, 300, 581-585.
|
[146]
|
Audenaert, K. (2001) The Asymptotic Relative Entropy of Entanglement. Physical Review Letters, 87, Article ID: 217902. http://dx.doi.org/10.1103/PhysRevLett.87.217902
|
[147]
|
Vidal, G. and Cirac, J. (2001) Irreversibility in Asymptotic Manipulations of Entanglement. Physical Review Letters, 86, 5803-5806.
|
[148]
|
Hayden, P.M., Horodecki, M. and Terhal, B.M. (2001) The Asymptotic Entanglement Cost of Preparing a Quantum State. Journal of Physics A: Mathematical and General, 34, 6891-6898.
http://dx.doi.org/10.1088/0305-4470/34/35/314
|
[149]
|
Bennett, C.H., Popescu, S., Rohrlich, D., Smolin, J.A. and Thapliyal, A.V. (2000) Exact and Asymptotic Measures of Multipartite Pure State Entanglement. Physical Review A, 63, Article ID: 012307.
http://dx.doi.org/10.1103/PhysRevA.63.012307
|
[150]
|
Machida, T. (2013) Limit Theorems for the Interference Terms of Discrete-Time Quantum Walks on the Line. Quantum Information and Computation, 13, 661-671.
|
[151]
|
Wootters, W. (1998) Entanglement of Formation of an Arbitrary State of Two Quibits. Physical Review Letters, 80, 2245-2248. http://dx.doi.org/10.1103/PhysRevLett.80.2245
|
[152]
|
Rungta, P., Buzek, V., Caves, C.M., Hillery, M. and Milburn, G.J. (2001) Universal State Inversion and Concurrence in Arbitrary Dimensions. Physical Review A, 64, Article ID: 042315. http://dx.doi.org/10.1103/PhysRevA.64.042315
|
[153]
|
Kuang, L.-M. and Zhou, L. (2003) Generation of Atom-Photon Entangled States in Atomic Bose-Einstein Condensate via Electromagnetically Induced Transparency. Physical Review A, 68, Article ID: 043606.
http://dx.doi.org/10.1103/PhysRevA.68.043606
|
[154]
|
Uhlmann, A. (2000) Fidelity and Concurrence of Conjugated States. Physical Review A, 62, Article ID: 032307.
http://dx.doi.org/10.1103/PhysRevA.62.032307
|
[155]
|
Peres, A. (1996) Separability Criterion for Density Matrices. Physical Review Letters, 77, 1413-1415.
http://dx.doi.org/10.1103/PhysRevLett.77.1413
|
[156]
|
Horodeckia, M., Horodeckib, P. and Horodecki, R. (1996) Separability of Mixed States: Necessary and Sufficient Conditions. Physical Review A, 223, 1-8. http://dx.doi.org/10.1016/S0375-9601(96)00706-2
|
[157]
|
Vidal, G. and Werner, R.F. (2002) Computable Measure of Entanglement. Physical Review A, 65, Article ID: 032314.
http://dx.doi.org/10.1103/PhysRevA.65.032314
|
[158]
|
Coffman, V., Kundu, J. and Wootters, W.K. (2000) Distributed entanglement. Physical Review A, 61, Article ID: 052306. http://dx.doi.org/10.1103/PhysRevA.61.052306
|
[159]
|
Wong, A. and Christensen, N. (2001) Potential Multiparticle Entanglement. Physical Review A, 63, Article ID: 044301.
http://dx.doi.org/10.1103/PhysRevA.63.044301
|
[160]
|
Osborne, T.J. and Verstraete, F. (2006) General Monogamy Inequality for Bipartite Qubit Entanglement. Physical Review Letters, 96, Article ID: 220503. http://dx.doi.org/10.1103/PhysRevLett.96.220503
|
[161]
|
Liu, C.B. and Petulante, N. (2010) On the von Neumann Entropy of Certain Quantum Walks Subject to Decoherence. Mathematical Structures in Computer Science, 20, 1099-1115.
|
[162]
|
Abal, G., Siri, R., Romanelli, A. and Donangelo, R. (2006) Quantum Walk on the Line: Entanglement and Non-Local Conditions. Physical Review A, 73, Article ID: 042302. http://dx.doi.org/10.1103/PhysRevA.73.042302
|
[163]
|
Ide, Y., Konno, N. and Machida, T. (2011) Entanglement for Discrete-Time Quantum Walks on the Line. Quantum Information and Computation, 11, 855-866.
|
[164]
|
Ampadu, C. (2011) Von Neumann Entanglement and Decoherence in Two Dimensional Quantum Walks. arXiv: 1110.0681.
|
[165]
|
Ampadu, C. (2012) On the von Neumann and Shannon Entropies for Quantum Walks on Z^2. International Journal of Quantum Information, 10, Article ID: 1250020. http://dx.doi.org/10.1142/S0219749912500207
|
[166]
|
Grimmett, G., Janson, S. and Scudo, P. (2004) Weak Limits for Quantum Random Walks. Physical Review E, 69, Article ID: 026119. http://dx.doi.org/10.1103/PhysRevE.69.026119
|
[167]
|
Konno, N. (2005) A New Type of Limit Theorems for the One Dimensional Quantum Random Walk. Journal of the Mathematical Society of Japan, 57, 1179-1195. http://dx.doi.org/10.2969/jmsj/1150287309
|
[168]
|
Konno, N. (2002) Quantum Random Walks in One Dimension. Quantum Information Processing, 1, 345-354.
http://dx.doi.org/10.1023/A:1023413713008
|
[169]
|
Ampadu, C. (2013) Interference Phenomena in the Continuous-Time Quantum Random Walk on Z. Unpublished.
|
[170]
|
Ampadu, C. (2012) Limit Theorems for Decoherent Two Dimensional Quantum Walks. Quantum Information Processing, 11, 1921-1929. http://dx.doi.org/10.1007/s11128-011-0349-4
|
[171]
|
Venegas-Andraca, S.E., Ball, J.L., Burnett, K. and Bose, S. (2005) Quantum Walks with Entangled Coins. New Journal of Physics, 7, 221.
|
[172]
|
Liu, C. and Pentulante, N. (2009) One-Dimensional Quantum Random Walk with Two Entangled Coins. Physical Review A, 79, Article ID: 032312. http://dx.doi.org/10.1103/PhysRevA.79.032312
|