Effect of P Addition on the Thermal Stability of Nanocrystalline Ni-Co-Fe-P Coatings

Abstract

The thermal stability of nanocrystalline Ni-Co-Fe-P coatings with phosphorus content up to 3.38 wt% prepared by pulsed electrodepostion was studied using XRD, TEM and DSC. It is found that multi-component alloying does improve the thermal stability of nanocrystalline coatings due to a “solution drag effect”. For nanocrystalline Ni-40.41%Co-6.16%Fe-1.63%P coating, P-atoms segregate the grain boundaries during annealing which leads to a higher thermal stability. While due to the higher initial P-concentration in Ni-30.1%Co-2.15%Fe-3.38%P, saturation of P and precipitation occurs earlier leading to a slightly lower stability.

Share and Cite:

Dai, P. and Lin, L. (2014) Effect of P Addition on the Thermal Stability of Nanocrystalline Ni-Co-Fe-P Coatings. Advances in Materials Physics and Chemistry, 4, 217-223. doi: 10.4236/ampc.2014.411025.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Su, F.H., Liu, C.S. and Huang, P. (2013) Friction and Wear of Nanocrystalline Co and Co-W Alloy Coatings Produced by Pulse Reverse Electrodeposition. Wear, 300, 114-125.
http://dx.doi.org/10.1016/j.wear.2013.01.120
[2] Hibbard, G., Erb, U., Aust, K.T., et al. (2002) Thermal Stability of Nanostrctured Coatings. Materials Science Forum, 386-388, 387-396.
http://dx.doi.org/10.4028/www.scientific.net/MSF.386-388.387
[3] Hibbard, G., Aust, K.T., Palumbo, G., et al. (2001) Thermal Stability of Electrodeposited Nanocrystalline Cobalt. Scripta Materialia, 44, 513-518.
http://dx.doi.org/10.1016/S1359-6462(00)00628-X
[4] Yu, H. and Dai, P.Q. (2004) Thermal Stability of Pulsed Electrodeposited Nanocrystalline Ni. Heat Treatment of Metals, 30, 16-18.
[5] Klement, U., Erb, U. and Elsherik, A.M. (1995) Thermal Stability of Nanocrystalline Ni. Materials Science and Engineering A, 203, 177-186.
http://dx.doi.org/10.1016/0921-5093(95)09864-X
[6] Malow, T.R. and Koch, C.C. (1996) Thermal Stability of Nanocrystalline Materials. Materials Science Forum, 225-227, 595-604.
http://dx.doi.org/10.4028/www.scientific.net/MSF.225-227.595
[7] Birringer, R. (1989) Nanocrystalline Materials. Materials Science and Engineering A, 117, 33-43.
http://dx.doi.org/10.1016/0921-5093(89)90083-X
[8] Liu, Y.C., Liu, L., Shen, B., et al. (2011) A Study of Thermal Stability in Electrodeposited Nanocrystalline Fe-Ni Invar Alloy. Materials Science and Engineering A, 528, 5701-5705.
http://dx.doi.org/10.1016/j.msea.2011.04.052
[9] Hibbard, G.D., Aust, K.T. and Erb, U. (2006) Thermal Stability of Electrodeposited Nanocrystalline Ni-Co Alloys. Materials Science and Engineering A, 433, 195-202.
http://dx.doi.org/10.1016/j.msea.2006.06.096
[10] Shigeaki, K. and Youhei, K. (2003) Grain Growth and Mechanical Properties of Electrodeposited Nanocrystalline Nickel-4.4Mass% Phosphorus Alloy. Materials Science and Engineering A, 358, 76-83.
http://dx.doi.org/10.1016/S0921-5093(03)00285-5
[11] Kissinger, H.E. (1957) Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry, 29, 1672-1706.
http://dx.doi.org/10.1021/ac60131a045
[12] Humphreys, F.J. and Hatherly, M. (1995) Recrystallization and Related Annealing Phenomena. Elsevier Science Ltd., Oxford.
[13] Lee, D.N. and Hur, K.H. (1999) The Evolution of Texture during Annealing of Electroless Ni-Co-P Coatings. Scripta Materialia, 40, 1333-1339.
http://dx.doi.org/10.1016/S1359-6462(99)00105-0
[14] Humphrey, F.J. and Hatherly, M. (1996) Recrystallization and Related Annealing Phenomena. Pergamon Press, Oxford.
[15] Mori, T., Koda, M., Monzen, R., et al. (1983) Particle Blocking in Grain Boundary Sliding and Associated Internal Friction. Acta Metallurgica, 31, 275-283.
http://dx.doi.org/10.1016/0001-6160(83)90104-9

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.