[1]
|
Ellis, D., Gosai, J., Emrick, C., Heintz, R., Romans, L., Gordon, D., Lu, S., Austin, F. and Smith, L. (2012) Occidiofungin’s Chemical Stability and in Vitro Potency against Candida species. Antimicrob Agents Chemother, 56, 765-769. http://dx.doi.org/10.1128/AAC.05231-11
|
[2]
|
Emrick, D., Ravichandran, A., Gosai, J., Lu, S., Gordon, D.M. and Smith, L. (2013) The Antifungal Occidiofungin Triggers an Apoptotic Mechanism of Cell Death in Yeast. Journal of Natural Products, 76, 829-838. http://dx.doi.org/10.1021/np300678e
|
[3]
|
Gu, G., Lu, S. and Wang, N. (2008) AmbR1 and AmbR2 Are Two Transcriptional Regulators Essential for the Antifungal Activity of Burkholderia sp Strain MS14. Phytopathology, 98, S63-S63.
|
[4]
|
Gu, G., Smith, L., Liu, A. and Lu, S.-E. (2011) A genetic and Biochemical Map for the Biosynthesis of Occidiofungin, an Antifungal Produced by Burkholderia contaminans Strain MS14. Applied and Environmental Microbiology, 77, 6189-6198. http://dx.doi.org/10.1128/AEM.00377-11
|
[5]
|
Gu, G., Wang, N., Chaney, N., Smith, L. and Lu, S.-E. (2009) AmbR1 is a Key Transcriptional Regulator for Production of Antifungal Activity of Burkholderia contaminans Strain MS14. FEMS Microbiology Letters, 297, 54-60. http://dx.doi.org/10.1111/j.1574-6968.2009.01653.x
|
[6]
|
Gu, G. Y., Smith, L., Wang, N., Wang, H. and Lu, S.E. (2009) Biosynthesis of an Antifungal Oligopeptide in Burkholderia contaminans Strain MS14. Biochemical and Biophysical Research Communications, 380, 328-332. http://dx.doi.org/10.1016/j.bbrc.2009.01.073
|
[7]
|
Lu, S.-E., Novak, J., Austin, F. W., Gu, G., Ellis, D., Kirk, M., Wilson-Stanford, S., Tonelli, M. and Smith, L. (2009) Occidiofungin, a Unique Antifungal Glycopeptide Produced by a Strain of Burkholderia contaminans. Biochemistry, 48, 8312. http://dx.doi.org/10.1021/bi900814c
|
[8]
|
Ravichandran, A., Gu, G., Escano, J., Lu, S.-E. and Smith, L. (2013) The Presence of Two Cyclase Thioesterases Expands the Conformational Freedom of the Cyclic Peptide Occidiofungin. Journal of Natural Products, 76, 150-156. http://dx.doi.org/10.1021/np3005503
|
[9]
|
Clancy, C.J., Huang, H., Cheng, S., Derendorf, H. and Nguyen, M.H. (2006) Characterizing the Effects of Caspofungin on Candida albicans, Candida parapsilosis and Candida glabrata Isolates by Simultaneous Time-Kill and Postantifungal-Effect Experiments. Antimicrobial Agents and Chemotherapy, 50, 2569-2572. http://dx.doi.org/10.1128/AAC.00291-06
|
[10]
|
Ernst, E.J., Klepser, M.E. and Pfaller, M.A. (2000) Postantifungal Effects of Echinocandin, Azole, and Polyene Antifungal Agents against Candida albicans and Cryptococcus neoformans. Antimicrobial Agents and Chemotherapy, 44, 1108-1111. http://dx.doi.org/10.1128/AAC.44.4.1108-1111.2000
|
[11]
|
Wei, T., Cooley, J., Austin, F., Lu, S., Smith, L. and Pruett, S. (2012) Nonclinical Toxicological Evaluation of Occidiofungin, a Unique Glycolipopeptide Antifungal. International Journal of Toxicology, 31, 326-336. http://dx.doi.org/10.1177/1091581812445185
|
[12]
|
Luster, M.I., Portier, C., Pait, D.G., White Jr., K.L., Gennings, C., Munson, A.E. and Rosenthal, G.J. (1992) Risk Assessment in Immunotoxicology I. Sensitivity and Predictability of Immune Tests. Fundamental and Applied Toxicology: Official Journal of the Society of Toxicology, 18, 200-210. http://dx.doi.org/10.1093/toxsci/18.2.200
|
[13]
|
Loftsson, T. and Brewster, M.E. (2012) Cyclodextrins as Functional Excipients: Methods to Enhance Complexation Efficiency. Journal of Pharmaceutical Sciences, 101, 3019-3032. http://dx.doi.org/10.1002/jps.23077
|
[14]
|
Germolec, D.R., Kashon, M., Nyska, A., Kuper, C.F., Portier, C., Kommineni, C., Johnson, K.A. and Luster, M.I. (2004) The Accuracy of Extended Histopathology to Detect Immunotoxic Chemicals. Toxicological Sciences: An Official Journal of the Society of Toxicology, 82, 504-514. http://dx.doi.org/10.1093/toxsci/kfh271
|
[15]
|
Gabay, C., Ben-Bassat, H., Schlesinger, M. and Laskov, R. (1999) Somatic Mutations and Intraclonal Variations in the Rearranged Vκ Genes of B-Non-Hodgkin’s Lymphoma Cell Lines. European Journal of Haematology, 63, 180-191. http://dx.doi.org/10.1111/j.1600-0609.1999.tb01766.x
|
[16]
|
Hamilton, T.C., Young, R.C. and Ozols, R.F. (1984) Experimental Model Systems of Ovarian Cancer: Applications to the Design and Evaluation of New Treatment Ap-proaches. Seminars in Oncology, 11, 285-298.
|
[17]
|
Wright, W.C., Daniels, W.P. and Fogh, J. (1981) Distinction of Seventy-One Cultured Human Tumor Cell Lines by Polymorphic Enzyme Analysis. Journal of the National Cancer Institute, 66, 239-247.
|
[18]
|
Roccaro, A.M., Hideshima, T., Richardson, P.G., Russo, D., Ribatti, D., Vacca, A., Dammacco, F. and Anderson, K.C. (2006) Bortezomib as an Antitumor Agent. Current Pharmaceutical Biotechnology, 7, 441-448. http://dx.doi.org/10.2174/138920106779116865
|
[19]
|
Tobinai, K. (2007) Proteasome Inhibitor, Bortezomib, for Myeloma and Lymphoma. International Journal of Clinical Oncology, 12, 318-326. http://dx.doi.org/10.1007/s10147-007-0695-5
|
[20]
|
Cavo, M. (2006) Proteasome Inhibitor Bortezomib for the Treatment of Multiple Myeloma. Leukemia, 20, 1341-1352. http://dx.doi.org/10.1038/sj.leu.2404278
|
[21]
|
Chauhan, D., Hideshima, T., Mitsiades, C., Richardson, P. and Anderson, K.C. (2005) Proteasome Inhibitor Therapy in Multiple Myeloma. Molecular Cancer Therapeutics, 4, 686-692. http://dx.doi.org/10.1158/1535-7163.MCT-04-0338
|
[22]
|
Anderson, K.C. (2004) Bortezomib Therapy for Myeloma. Current Hematology Reports, 3, 65-65.
|
[23]
|
Anderson, K.C. (2007) Targeted Therapy of Multiple Myeloma Based upon Tumor-Microenvironmental Interactions. Experimental Hematology, 35, 155-162. http://dx.doi.org/10.1016/j.exphem.2007.01.024
|
[24]
|
Adams, J., Palombella, V.J., Sausville, E.A., Johnson, J., Destree, A., Lazarus, D.D., Maas, J., Pien, C.S., Prakash, S. and Elliott, P.J. (1999) Proteasome Inhibitors: A Novel Class of Potent and Effective Antitumor Agents. Cancer Research, 59, 2615-2622.
|
[25]
|
Fuchs, B.A. and Pruett, S.B. (1993) Morphine Induces Apoptosis in Murine Thymocytes in Vivo but Not in Vitro: Involvement of both Opiate and Glucocorticoid Receptors. The Journal of Pharmacology and Experimental Therapeutics, 266, 417-423.
|
[26]
|
Demain, A.L. and Vaishnav, P. (2011) Natural Products for Cancer Chemotherapy. Microbial Biotechnology, 4, 687-699. http://dx.doi.org/10.1111/j.1751-7915.2010.00221.x
|