[1]
|
Rane, N.S., Chakrabarti, O., Feigenbaum, L. and Hegde, R. (2010) Signal Sequence Insufficiency Contributes to Neurodegeneration Caused by Transmembrane Prion Protein. The Journal of Cell Biology, 188, 515-526.
http://dx.doi.org/10.1083/jcb.200911115
|
[2]
|
Haraguchi, T., Fisher, S., Olofsson, S., Endo, T., Groth, D., Tarentino, A., Borchelt, D.R., Teplow, D., Hood, L., Burlingame, A., Lycke, E., Kobata, A. and Prusiner, S.B. (1989) Asparagine-Linked Glycosylation of the Scrapie and Cellular Prion Proteins. Archives of Biochemistry and Biophysics, 274, 1-13.
http://dx.doi.org/10.1016/0003-9861(89)90409-8
|
[3]
|
Stahl, N., Borchelt, D.R., Hsiao, K. and Prusiner, S.B. (1987) Scrapie Prion Protein Contains a Phosphatidylinositol Glycolipid. Cell, 51, 229-240. http://dx.doi.org/10.1016/0092-8674(87)90150-4
|
[4]
|
Stimson, E., Hope, J., Chong, A. and Burlingame, A.L. (1999) Site-Specific Characterization of the N-Linked Glycans of Murine Prion Protein by High-Performance Liquid Chromatography/Electrospray Mass Spectrometry and Exoglycosidase Digestions. Biochemistry, 38, 4885-4895. http://dx.doi.org/10.1021/bi982330q
|
[5]
|
Zhou, Z. and Xiao, G. (2013) Conformational Conversion of Prion Protein in Prion Diseases. Acta Biochimica et BiophysicaSinica, 45, 465-476. http://dx.doi.org/10.1093/abbs/gmt027
|
[6]
|
Ranjan-Maiti, N. and Surewicz, W.K. (2001) The Role of Disulfide Bridge in the Folding and Stability of the Recombinant Human Prion Protein. The Journal of Biological Chemistry, 276, 2427-2431.
http://dx.doi.org/10.1074/jbc.M007862200
|
[7]
|
Coleman, B.M., Harrison, C.F., Guo, B., Masters, C.L., Barnham, K.J., Lawson, V.A. and Hill, H.F. (2014) Pathogenic Mutations within the Hydrophobic Domain of the Prion Protein Lead to the Formation of the Protease-Sensitive Prion Species with Increased Lethality. Journal of Virology, 88, 2690-2703. http://dx.doi.org/10.1128/JVI.02720-13
|
[8]
|
Prusiner, S.B. (1982) Novel Proteinaceous Infectious Particles Cause Scrapie. Science, 216, 136-144.
http://dx.doi.org/10.1126/science.6801762
|
[9]
|
Zahn, R., Liu, A., Luhrs, T., Riek, R., von Schroetter, C., Lopez Garcia, F., Billeter, M., Calzolai, L., Wider, G. and Wuthrich, K. (2000) NMR Solution Structure of the Human Prion Protein. Proceedings of the National Academy of Sciences U.S.A., 97, 145-150. http://dx.doi.org/10.1073/pnas.97.1.145
|
[10]
|
Rossetti, G., Cong, X., Caliandro, R., Legname, G. and Carloni, P. (2011) Common Structural Traits Across Pathogenic Mutants of the Human Prion Protein and Their Implications for Familial Prion Disorders. Journal of Molecular Biology, 411, 700-712. http://dx.doi.org/10.1016/j.jmb.2011.06.008
|
[11]
|
Kiachopoulos, S., Bracher, A., Winklhofer, K.F. and Talzet, J. (2005) Pathogenic Mutations Located at the Hydrophobic Core of the Prion Protein Interfere with Folding and Attachment of the Glycosylphosphatidylinositol Anchor. The Journal of Biological Chemistry, 280, 9320-9329. http://dx.doi.org/10.1074/jbc.M412525200
|
[12]
|
Cheng, W., van der Kamp, M.W. and Daggett, V. (2014) Structural and Dynamic Properties of the Human Prion Protein. Biophysical Journal, 106, 1152-1163. http://search.proquest.com/docview/1508983494?accountid=37347
http://dx.doi.org/10.1016/j.bpj.2013.12.053
|
[13]
|
Ilc, G., Giachin, G., Jaremko, M., Jaremko, L., Benetti, F., Plavec, J., Zhukov, I. and Legname, G. (2010) NMR Structure of the Human Prion Protein with the Pathological Q212P Mutation Reveals Unique Structural Features. PLoS ONE, 5, e11715. http://dx.doi.org/10.1371/journal.pone.0011715
|
[14]
|
Tatzelt, J., Ed. (2011) Topics in Current Chemistry 305: Prion Proteins. Springer Berlin-Heidelberg, Berlin.
|
[15]
|
Taylor, D.R., Whitehouse, I.J. and Hooper, N.M. (2009) Glypican-1 Mediates Both Prion Protein Lipid Raft Association and Disease Isoform Formation. PLoS Pathogens, 5, e1000666. http://dx.doi.org/10.1371/journal.ppat.1000666
|
[16]
|
Elmallah, M.I.Y., Borgmeyer, U., Betzel, C. and Redecke, L. (2013) Impact of Methionine Oxidation as an Initial Event on the Pathway of Human Prion Protein Conversion. Prion, 7, 404-411. http://dx.doi.org/10.4161/pri.26745
|
[17]
|
Mani, K., Cheng, F., Havsmark, B., Jonsson, M., Belting, M. and Fransson, L.A. (2003) Prion, Amyloid Beta-Derived Cu(II) Ions, or Free Zn(II) Ions Support S-Nitroso-Dependent Autocleavage of Glypican-1 Heparan Sulfate. The Journal of Biological Chemistry, 278, 38956-38965. http://dx.doi.org/10.1074/jbc.M300394200
|
[18]
|
Wu, D., Zhang, W., Luo, Q., Luo, K., Huang, L., Wang, W., Huang, T., Chen, R., Lin, Y., Pang, D. and Xiao, G. (2010) Copper (II) Promotes the Formation of Soluble Neurotoxic PrP Oligomers in Acidic Environment. The Journal of Cell Biochemistry, 111, 627-633. http://dx.doi.org/10.1002/jcb.22743
|
[19]
|
Zhong, L. (2010) Exposure of Hydrophobic Core in Human Prion Protein Pathogenic Mutant H187R. Journal of Biomolecular Structure Dynamics, 28, 355-361. http://dx.doi.org/10.1080/07391102.2010.10507365
|
[20]
|
Cheng, C.J. and Dagget, V. (2014) Different Misfolding Mechanisms Converge on Common Conformational Changes: Human Prion Protein Pathogenic Mutants Y218N and E196K. Prion, 8, 125-135. http://dx.doi.org/10.4161/pri.27807
|
[21]
|
Hess, B., Kutzner, C., van der Spoel, D. and Lindahl, E. (2008) GROMACS 4: Algorithms for Highly Efficient, Load Balanced and Scalable Molecular Simulation. Journal of Chemical Theory and Computation, 4, 435-447.
http://dx.doi.org/10.1021/ct700301q
|
[22]
|
Hess, B. (2002) Determining the Shear Viscosity of Model Liquids from Molecular Dynamics. The Journal of Chemical Physics, 116, 209-217. http://dx.doi.org/10.1063/1.1421362
|