Magnetoencephalography Coherence Source Imaging in Dyslexia: Activation of Working Memory Pathways
Alfred Mansour1*, Susan M. Bowyer2,3,4, Annette E. Richard1, John E. Moran2, Laszlo A. Erdodi5, Amy Olszewski1,6, Lesley Pawluk1,7, Daniel Jacobson8, Kelly Vogt1, Aimee M. Moore1, Renée Lajiness-O’Neill1,7
1Department of Psychology, Eastern Michigan University, Ypsilanti, USA.
2Neuromagnetism Lab, Department of Neurology, Henry Ford Hospital, Detroit, USA.
3Wayne State University, Detroit, USA.
4Oakland University, Rochester, USA.
5Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, USA.
6Department of Psychiatry, SUNY Upstate Medical University, Syracuse, USA.
7Department of Psychiatry, Division of Neuropsychology, Henry Ford Hospital, Detroit, USA.
8United States Air Force, USMS, Biloxi, USA.
DOI: 10.4236/psych.2014.516193   PDF   HTML   XML   4,005 Downloads   4,911 Views   Citations


This study investigates the functional connectivity of neuronal networks critical for working memory in individuals with dyslexia by means of magnetoenchephalographic (MEG) coherence imaging. Individuals with dyslexia showed an early onset of activation in anterior cortical regions (precentral gyrus and the superior frontal gyrus), which differed from controls where activation initiated in posterior cortical regions (supramarginal gyrus and superior temporal gyrus). Further, individuals with dyslexia showed lower brain activity in the right superior temporal gyrus and right middle temporal gyrus than controls during a spatial working memory (SWM) task. In contrast, during a verbal working memory (VWM) task, individuals with dyslexia showed lower activity in the right insular cortex and right superior temporal gyrus and higher, likely compensatory, activity in the right fusiform gyrus, left parahippocampal gyrus, and left precentral gyrus. When performing a SWM task, individuals with dyslexia showed significantly lower coherent activity and synchronization in 1) right frontal connectivity, 2) right fronto-temporal connectivity, 3) left and right frontal connectivity, 4) left temporal and right frontal connectivity, and 5) left occipital and right frontal connectivity. MEG coherence source imaging (CSI) by frequency bands showed lower mean coherence values in individuals with dyslexia compared to controls for each frequency range during the SWM task. In contrast, during the VWM task, individuals with dyslexia showed higher coherent low frequency (3 - 15 Hz) and lower coherent high frequency (30 - 45 Hz) synchronization than control subjects. Logistic regression of coherent activity by group membership was significant, with an overall predictive success of 84.4% (88.9% for controls and 77.8% for dyslexia). Coherence between the right lateral orbitofrontal and middle orbitofrontal gyri pair substantially contributed to group membership. The results suggest a pattern of aberrant connectivity as evidenced by the early onset and reliance on prefrontal cortical areas, the differential activation of fronto-temporal brain systems, and an altered pattern of functional connectivity in the frontotemporal pathways mediating these behaviors.

Share and Cite:

Mansour, A. , Bowyer, S. , Richard, A. , Moran, J. , Erdodi, L. , Olszewski, A. , Pawluk, L. , Jacobson, D. , Vogt, K. , Moore, A. & Lajiness-O’Neill, R. (2014). Magnetoencephalography Coherence Source Imaging in Dyslexia: Activation of Working Memory Pathways. Psychology, 5, 1879-1910. doi: 10.4236/psych.2014.516193.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Alexander, A., & Slinger Constant, A. (2004). Current Status of Treatments for Dyslexia: Critical Review. Journal of Child Neurology, 19, 744-758.
[2] American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.
[3] Arns, M., Peters, S., Breteler, R., & Verhoeven, L. (2007). Different Brain Activation Patterns in Dyslexic Children: Evidence from EEG Power and Coherence Patterns for the Double-Deficit Theory of Dyslexia. Journal of Integrative Neuroscience, 6, 175-190.
[4] Bacon, A. M., Parmentier, F. B. R., & Barr, P. (2012). Visuospatial Memory in Dyslexia: Evidence for Strategic Deficits. Memory, 20, 1-21.
[5] Baddeley, A. D. (2007). Working Memory, Thought & Action. Oxford, UK: Oxford University Press.
[6] Bailey, P., & Snowling, M. (2002). Auditory Processing and the Development of Language and Literacy. British Medical Bulletin, 63, 135-146.
[7] Belardinelli, P., Ciancetta, L., Staud, M., Pizzella, V., Londei, A., Birbaumer, N. et al. (2007). Cerebro-Muscular and Cerebro-Cerebral Coherence in Patients with Pre- and Perinatally Acquired Unilateral Brain Lesions. NeuroImage, 37, 1301-1314.
[8] Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society, 57, 289-300.
[9] Benton, A. L. (1975). Developmental Dyslexia: Neurological Aspects. Advances in Neurology, 7, 1-47.
[10] Berninger, V., Raskind, W., Richards, T., Abbott, R., & Stock, P. (2008). A Multidisciplinary Approach to Understanding Developmental Dyslexia within Working-Memory Architecture: Genotypes, Phenotypes, Brain and Instruction. Developmental Neuropsychology, 33, 707-744.
[11] Bishop, D. V. M., & Snowling, M. (2004). Developmental Dyslexia and Specific Language Impairment: Same or Different? Psychological Bulletin, 130, 858-886.
[12] Boisgueheneuc, F., Levy, R., Volle, E., Seassau, M., Duffau, H., Kinkingnehun, S. et al. (2006). Functions of the Left Superior Frontal Gyrus in Humans: A Lesion Study. Brain, 129, 3315-3328.
[13] Bowyer, S. M., Mason, K., Tepley, N., Smith, B., & Barkley, G. L. (2003). Magnetoencephalographic Validation Parameters for Clinical Evaluation of Interictal Epileptic Activity. Neurophysiology, 20, 87-93.
[14] Bowyer, S. M., Moran, J. E., Mason, K. M., Constantinou, J. E., Smith, B. J., Barkley, G. L. et al. (2004). MEG Localization of Language-Specific Cortex Utilizing MR-FOCUSS. Neurology, 62, 2247-2255.
[15] Carroll, J. M., Maughan, B., Goodman, R., & Meltzer, H. (2005). Literacy Difficulties and Psychiatric Disorders: Evidence for Comorbidity. Developmental Psychology, 46, 524-532.
[16] Carter, J., Lanham, D., Cutting, L., Clements Stephens, A., Chen, X., Hadzipasic, M. et al. (2009). A Dual DTI Approach to Analyzing White Matter in Children with Dyslexia. Psychiatry Research, 172, 215-219.
[17] Catani, M., Dell’Acqua, F., Vergani, F., Malik, F., Hodge, H., Roy, P. et al. (2012). Short Frontal Lobe Connections of the Human Brain. Cortex, 48, 273-291.
[18] Cavada, C., Company, T., Tejedor, J., Cruz-Rizzolo, R. J., & Reinoso-Suarez, F. (2000). The Anatomical Connections of the Macaque Monkey Orbitofrontal Cortex: A Review. Cerebral Cortex, 10, 220-242.
[19] Conway, T., Heilman, K., Gopinath, K., Peck, K., Bauer, R., Briggs, R. et al. (2008). Neural Substrates Related to Auditory Working Memory Comparisons in Dyslexia: An fMRI Study. Journal of the International Neuropsychological Society, 14, 629-639.
[20] Corina, D. P., Richards, T. L., Serafini, S., Richards, A. L., Steury, K., Abbott, R. D. et al. (2001). fMRI Auditory Language Differences between Dyslexic and Able Reading Children. Neuroreport, 12, 1195-1201.
[21] Cropley, V. L., Fujita, M., Innis, R. B., & Nathan, P. J. (2006). Molecular Imaging of the Dopaminergic System and Its Association with Human Cognitive Function. Biological Psychiatry, 59, 898-907.
[22] Crosson, B. (1999). Subcortical Mechanisms in Language: Lexical-Semantic Mechanisms and the Thalamus. Brain and Cognition, 40, 414-438.
[23] Crosson, B., Benefield, H., Cato, M. A., Sadek, J. R., Moore, A. B., & Wierenga, C. E. et al. (2003). Left and Right Basal Ganglia and Frontal Activity during Language Generation: Contributions to Lexical, Semantic and Phonological Processes. Journal of the International Neuropsychological Society, 9, 1061-1077.
[24] D'Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI Studies of Spatial and Nonspatial Working Memory. Cognitive Brain Research, 7, 1-13.
[25] Deutsch, G. K., Dougherty, R. F., Bammer, R., Siok, W. T., Gabrieli, J. D., & Wandell, B. (2005). Children’s Reading Performance Is Correlated with White Matter Structure Measured by Diffusion Tensor Imaging. Cortex, 41, 354-363.
[26] Dong, Y., Nakamura, K., Okada, T., Hanakawa, T., Fukuyama, H., Mazziotta, J. C. et al. (2005). Neural Mechanisms Underlying the Processing of Chinese Words: An fMRI Study. Neuroscience Research, 52, 139-145.
[27] Eden, G. F., Jones, K. M., Cappell, K., Gareau, L., Wood, F. B., Zeffiro, T. A. et al. (2004). Neural Changes Following Remediation in Adult Developmental Dyslexia. Neuron, 44, 411-422.
[28] Eden, G. F., Van Meter, J. W., Rumsey, J. M., & Zeffiro, T. A. (1996). The Visual Deficit Theory of Developmental Dyslexia. NeuroImage, 4, S108-S117.
[29] Efron, B. (2010). Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing and Prediction. Cambridge: Cambridge University Press.
[30] Elisevich, K., Shukla, N., Moran, J., Smith, B., Schultz, L., Mason, K. et al. (2011). An Assessment of MEG Coherence Imaging in the Study of Temporal Lobe Epilepsy. Epilepsia, 52, 1110-1119.
[31] Facoetti, A., Trussardi, A. N., Ruffino, M., Lorusso, M. L., Cattaneo, C., Galli, R. et al. (2010). Multisensory Spatial Attention Deficits Are Predictive in Phonological Decoding Skills in Developmental Dyslexia. Journal of Cognitive Neuroscience, 22, 1011-1025.
[32] Farris, E. A., Odegard, T. N., Miller, H. L., Ring, J., Allen, G., & Black, J. (2011). Functional Connectivity between the Left and Right Inferior Frontal Lobes in a Small Sample of Children with and without Reading Difficulties. Neurocase, 17, 425-439.
[33] Fiez, J., Tranel, D., Seager Frerichs, D., & Damasio, H. (2006). Specific Reading and Phonological Processing Deficits Are Associated with Damage to the Left Frontal Operculum. Cortex, 42, 624-643.
[34] Fine, J. G., Semrud-Clikeman, M., Keith, T. Z., Stapleton, L. M., & Hynd, G. W. (2007). Reading and the Corpus Callosum: An MRI Family Study of Volume and Area. Neuropsychology, 21, 235-241.
[35] Fletcher, J. M., Lyon, G. R., Fuchs, L., & Barnes, M. (2007). Learning Disabilities: From Identification to Intervention. New York: Guilford Press.
[36] Gaillard, W. D., Balsamo, L. M., Ibrahim, Z., Sachs, B. C., & Xu, B. (2003). fMRI Identifies Regional Specialization of Neural Networks for Reading in Young Children. Neurology, 60, 94-100.
[37] Galaburda, A., & Livingstone, M. (1993). Evidence for a Magnocellular Defect in Developmental Dyslexia. Annals of the New York Academy of Sciences, 682, 70-82.
[38] German, E., Gagliano, A., & Curatolo, P. (2010). Comorbidity of ADHD and Dyslexia. Developmental Neuropsychology, 35, 475-493.
[39] Gevins, A. S., & Cutillo, B. S. (1993). Neuroelectric Evidence for Distributed Processing in Human Working Memory. Electroencephalography and Clinical Neurophysiology, 87, 128-143.
[40] Happaney, K., Zelazo, P. D., & Stuss, D. T. (2004). Development of Orbitofrontal Function: Current Themes and Future Directions. Brain and Cognition, 55, 1-10.
[41] Hasan, K. M., Molfese, D. L., Wallmuni, I. S., Stuebing, K. K., Papanicolaou, A. C., Narayana, P. A., & Fletcher, J. M. (2012). Diffusion Tensor Quantification and Cognitive Correlates of the Macrostructure and Microstructure of the Corpus Callosum in Typically Developing and Dyslexic Children. NMR Biomedicine, 25, 1263-1270.
[42] Helenius, P., Tarkiainen, A., Cornelissen, P., Hansen, P. C., & Salmelin, R. (1999). Dissociation of Normal Feature Analysis and Deficient Processing of Letter-Strings in Dyslexic Adults. Cerebral Cortex, 9, 476-483.
[43] Hinshaw, S. P. (1992). Externalizing Behavior Problems and Academic Underachievement in Childhood and Adolescence: Causal Relationships and Underlying Mechanisms. Psychological Bulletin, 111, 127-155.
[44] Hoeft, F., Mc Candliss, B. D., Black, J. M., Gantman, A., Zakerani, N., Hulme, C. et al. (2011). Neural Systems Predicting Long-Term Outcome in Dyslexia. Proceedings of the Academy of Science of the United States of America, 108, 361-368.
[45] Hoeft, F., Meyler, A., Hernandez, A., Juel, C., Taylor Hill, H., Martindale, J. et al. (2007). Functional and Morphometric Brain Dissociation between Dyslexia and Reading Ability. Proceedings of the National Academy of Sciences of the United States of America, 104, 4234-4239.
[46] Hoeft, F., Ueno, T., Reiss, A. L., Meyler, A., Whitfield-Gabrieli, S., Glover, G. H. et al. (2007). Prediction of Childrens Reading Skills Using Behavioral, Functional and Structural Neuroimaging Measures. Behavioral Neuroscience, 12, 602-613.
[47] Hynd, G. W., Hall, J., Novey, E. S., Eliopulos, D., Black, K., Gonzalez, J. J. et al. (1995). Dyslexia and Corpus Callosum Morphology. Archives of Neurology, 52, 32-38.
[48] Indefrey, P., & Levelt, W. J. (2004). The Spatial and Temporal Signatures of Word Production Components. Cognition, 92, 101-144.
[49] Karnath, H. O. (2001). New Insights into the Functional of the Superior Temporal Cortex. Nature Reviews Neuroscience, 2, 568-576.
[50] Katz, L. J., Brown, F. C., Roth, R. M., & Beers, S. R. (2011). Processing Speed and Working Memory Performance in Those with Both ADHD and a Reading Disorder Compared with Those with ADHD Alone. Archives of Clinical Neuropsychology, 26, 425-433.
[51] Keller, T., & Just, M. (2009). Altering Cortical Connectivity: Remediation-Induced Changes in the White Matter of Poor Readers. Neuron, 64, 624-631.
[52] Kerestes, R., Ladouceur, C. D., Meda, S., Nathan, P. J., Blumberg, H. P., Maloney, K. et al. (2012). Abnormal Prefrontal Activity Subserving Attentional Control of Emotion in Remitted Depressed Patients during a Working Memory Task with Emotional Distractors. Psychological Medicine, 42, 29-40.
[53] Kibby, M., Kroese, J., Krebbs, H., Hill, C., & Hynd, G. (2009). The Pars Triangularis in Dyslexia and ADHD: A Comprehensive Approach. Brain and Language, 111, 46-54.
[54] Klingberg, T., Hedehus, M., Temple, E., Salz, T., Gabrieli, J. D., Moseley, M. E. et al. (2000). Microstructure of Temporo-Parietal White Matter as a Basis for Reading Ability: Evidence from Diffusion Tensor Magnetic Resonance Imaging. Neuron, 25, 483-500.
[55] Kringelbach, M. L., & Rolls, E. T. (2004). The Functional Neuroanatomy of the Human Orbitofrontal Cortex: Evidence from Neuroimaging and Neuropsychology. Progress in Neurobiology, 72, 341-372.
[56] Kujala, J., Pammer, K., Cornelissen, P. L., Roebroeck, P., Formisano, E., & Salmelin, R. (2007) Phase Coupling in a Cerebro-Cerebellar Network at 8-13 Hz during Reading. Cerebral Cortex, 17, 1476-1485.
[57] Laine, M., Salmelin, R., Helenius, P., & Marttila, R. (2000). Brain Activation during Reading in Deep Dyslexia: An MEG Study. Journal of Cognitive Neuroscience, 12, 622-634.
[58] Lajiness-O’Neill, R. Akamine, Y., & Bowyer, S. M. (2007). Treatment Effects of Fast for Word Demonstrated by Magnetoencephalography in a Child with Developmental Dyslexia. Neurocase, 13, 390-401.
[59] Machizawa, M., Kanai, R., Rees, G., & Driver, J. (2010). Cortical Anatomy Relates to Individual Differences in Dissociable Aspects of Attention and Visual Working Memory Capacity. Journal of Vision, 10, 775.
[60] Mc Candliss, B., & Noble, K. (2003). The Development of Reading Impairment: A Cognitive Neuroscience Model. Mental Retardation and Developmental Disabilities Research Reviews, 9, 196-204.
[61] Moran, J. E. (2008). MEG Tools. Detroit, MI: OU-HFH.
[62] Moran, J. E., Bowyer, S. M., & Tepley, N. (2005). Multi-Resolution FOCUSS: A Source Imaging Technique Applied to MEG Data. Brain Topography, 18, 1-17.
[63] Nagarajan, S., Mahncke, H., Salz, T., Tallal, P., Roberts, T., & Merzenich, M. M. (1999). Cortical Auditory Signal Processing in Poor Readers. Proceedings of the National Academy of Sciences of the United States of America, 96, 6483-6488.
[64] Newbury, D., Bishop, D. V. M., & Monaco, A. (2005). Genetic Influences on Language Impairment and Phonological Short-Term Memory. Trends in Cognitive Sciences, 9, 528-534.
[65] Nicolson, R. I., Fawcett, A. J., Brookes, R. L., & Needle, J. (2010). Procedural Learning and Dyslexia. Dyslexia, 16, 194-212.
[66] Niogi, S. N., & Mc Candliss, B. D. (2006). Left Lateralized White Matter Microstructure Accounts for Individual Differences in Reading Ability and Disability. Neuropsychologia, 44, 2178-2188.
[67] Pammer, K., Hansen, P., Holliday, I., & Cornelissen, P. (2006). Attentional Shifting and the Role of the Dorsal Pathway in Visual Word Recognition. Neuropsychologia, 44, 2926-2936.
[68] Papanicolaou, A. C., Simos, P. G., Breier, J. I., Fletcher, J. M., Foorman, B. R., Francis, D. et al. (2003). Brain Mechanisms for Reading in Children with and without Dyslexia: A Review of Studies of Normal Development and Plasticity. Developmental Neuropsychology, 24, 593-612.
[69] Pennington, B., McGrath, L., Rosenberg, J., Barnard, H., Smith, S., Willcutt, E. et al. (2009). Gene X Environment Interactions in Reading Disability and Attention-Deficit/Hyperactivity Disorder. Developmental Psychology, 45, 77-89.
[70] Richlan, F. (2012). Developmental Dyslexia: Dysfunction of the Left Hemisphere-Reading Network. Frontier in Human Neuroscience, 6, 1-5.
[71] Richlan, F., Kronbichler, M., & Wimmer, H. (2009). Functional Abnormalities in the Dyslexic Brain: A Quantitative Meta-Analysis of Neuroimaging Studies. Human Brain Mapping, 30, 3299-3308.
[72] Rimrodt, S. L., Peterson, D. J., Denckla, M. B., Kaufmann, W. E., & Cutting, L. E. (2009). White Matter Microstructural Differences Linked to Left Perisylvian Language Network in Children with Dyslexia. Cortex, 46, 739-749.
[73] Robichon, F., Bouchard, P., Demonet, J., & Habib, M. (2000). Developmental Dyslexia: Re-Evaluation of the Corpus Callosum in Male Adults. European Neurology, 43, 233-237.
[74] Sarkari, S., Simos, P., Fletcher, J., Castillo, E., Breier, J., & Papanicolaou, A. (2002). Contributions of Magnetic Source Imaging to the Understanding of Dyslexia. Seminars in Pediatric Neurology, 9, 229-238.
[75] Sekihara, K., Nagarajan, S. S., Poeppel, D., Marantz, A., & Miyashita, Y. (2001). Reconstructing Saptio-Temporal Activities of Neural Sources Using MEG Vector Beamformer Technique. IEEE Transactions on Biomedical Engineering, 48, 760-771.
[76] Shaywitz, B. A., Shaywitz, S. E., Blachman, B. A., Pugh, K. R., Fulbright, R. K., Skudlarski, P. et al. (2004). Development of Left Occipito-Temporal Systems for Skilled Reading in Children after a Phonologically-Based Intervention. Biological Psychiatry, 55, 926-933.
[77] Shaywitz, S. E., Shaywitz, B. A., Pugh, K. R., Fulbright, R. K., Constable, R. T., Mencl, W. E. et al. (1998). Functional Disruption in the Organization of the Brain for Reading in Dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 95, 2636-2641.
[78] Simos, P. G., Breier, J. I., Zouridakis, G., & Papanicolaou, A. C. (1998). Identification of Language-Specific Brain Activity Using Magnetoencephalography. Journal of Clinical and Experimental Neuropsychology, 20, 706-722.
[79] Simos, P. G., Papanicolaou, A. C., Breier, J. I., Fletcher, J. M., Wheless, J. W., Maggio, W. W. et al. (2000). Insights into Brain Function and Neural Plasticity Using Magnetic Source Imaging. Journal of Clinical Neurophysiology, 17, 143-162.
[80] Simos, P., Fletcher, J., Denton, C., Sarkari, S., Billingsley Marshall, R., & Papanicolaou, A. (2006). Magnetic Source Imaging Studies of Dyslexia Interventions. Developmental Neuropsychology, 30, 591-611.
[81] Simos, P., Fletcher, J., Foorman, B. R., Francis, D. J., Castillo, E. M., Davis, R. N. et al. (2002). Brain Activation Profiles during Early Stages of Reading Acquisition. Journal of Child Neurology, 17, 159-163.
[82] Snowling, M., & Hulme, C. (2011). Evidence-Based Interventions for Reading and Language Difficulties: Creating a Virtuous Circle. British Journal of Educational Psychology, 81, 1-23.
[83] Sridharan, D., Levitin, D. J., & Menon, V. (2008). A Critical Role for the Fronto-Insular Cortex in Switching between Central-Executive and Default-Mode Networks. Proceedings of the National Academy of Sciences of the United States of America, 105, 12569-12574.
[84] Steinbrink, C., Vogt, K., Kastrup, A., Muller, H. P., Juengling, F. D., Kassubek, J. et al. (2008). The Contribution of White and Gray Matter Differences to Developmental Dyslexia: Insights from DTI and VBM at 3.0 T. Neuropsychologica, 46, 3170-3178.
[85] Strong, G., Torgerson, C., Torgerson, D., & Hulme, C. (2011). A Systematic Meta-Analytic Review of Evidence for the Effectiveness of the “Fast for Word” Language Intervention Program. Journal of Child Psychology and Psychiatry and Allied Disciplines, 52, 224-235.
[86] Stuss, D. T. (2011). Function of the Frontal Lobes: Relation to Executive Functions. Journal of the International Neuropsychological Society, 17, 759-765.
[87] Stuss, D. T., & Alexander, M. P. (2007). Is There a Dysexecutive Syndrome? Philosophical Transactions of the Royal Society, 362, 901-915.
[88] Stuss, D. T., & Levine, B. (2002). Adult Clinical Neuropsychology: Lessons from Studies of the Frontal Lobes. Annual Reviews in Psychology, 53, 401-433.
[89] Swanson, H. L., Howard, C. B., & Saez, L. (2006). Do Different Components of Working Memory Underlie Different Subgroups of Reading Disabilities? Journal of Learning Disabilities, 39, 252-269.
[90] Talcott, J. B., Witton, C., McLean, M. F., Hansen, P. C., Rees, A., Green, G. G. et al. (2000). Dynamic Sensory Sensitivity of Children’s Word Decoding Skills. Proceeding of the National Academy of Sciences of the United States of America, 97, 2952-2957.
[91] Tarkiainen, A., Helenius, P., & Salmelin, R. (2003). Category-Specific Occipitotemporal Activation during Face Perception in Dyslexic Individuals: An MEG Study. Neuroimage, 19, 1194-1204.
[92] Temple, E. (2002). Brain Mechanisms in Normal and Dyslexic readers. Current Opinion in Neurobiology, 12, 178-183.
[93] Thomason, M., & Thompson, P. (2011). Diffusion Imaging, White Matter and Psychopathology. Annual Review of Clinical Psychology, 7, 63-85.
[94] Toplak, M. E., Jain, U., & Tannock, R. (2005). Executive and Motivational Processes in Adolescents with Attention-Deficit-Hyperactivity Disorder (ADHD). Behavioral and Brain Functions, 1, 8-20.
[95] Trauzettel-Klosinski, S., Durrwachter, U., Klosinski, G., & Braun, C. (2006). Cortical Activation during Word Reading and Picture Naming in Dyslexic and Non-Reading-Impaired Children. Clinical Neurophysiology, 117, 1085-1097.
[96] Trzesniewski, K. H., Moffitt, T. E., Caspi, A., Taylor, A., & Maughan, B. (2006). Revisiting the Association between Reading Achievement and Antisocial Behavior: New Evidence of an Environmental Explanation from a Twin Study. Child Development, 77, 72-88.
[97] Valdois, S., Bosse, M., & Tainturier, M. (2004). The Cognitive Deficits Responsible for Developmental Dyslexia: Review of Evidence for a Selective Visual Attentional Disorder. Dyslexia, 10, 339-363.
[98] Vandermosten, M., Boets, B., Wouters, J., & Ghesquiere, P. (2012). A Qualitative and Quantitative Review of Diffusion Tensor Imaging Studies in Reading and Dyslexia. Neuroscience and Biobehavioral Reviews, 36, 1532-1552.
[99] Vellutino, F., Fletcher, J., Snowling, M., & Scanlon, D. (2004). Specific Reading Disability (Dyslexia): What Have We Learned in the Past Four Decades? Journal of Child Psychology and Psychiatry and Allied Disciplines, 45, 2-40.
[100] von Plessen, K., Lundervold, A., Duta, N., Heiervang, E., Klauschen, F., Smievoll, A. I. et al. (2002). Less Developed Corpus Callosum in Dyslexic Subjects—A Structural MRI Study. Neuropsychologia, 40, 1035-1044.
[101] Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence. San Antonio, Texas: Pearson Corporation.
[102] Wehner, D. T., Ahlfors, S. P., & Mody, M. (2007). Effects of Phonological Contrast on Auditory Word Discrimination in Children with and without Reading Disability: A Magnetoencephalography (MEG) Study. Neuropsychologia, 45, 3251-3262.
[103] Weiss, S., & Mueller, H. M. (2003). The Contribution of EEG Coherence to the Investigation of Language. Brain and Language, 85, 325-343.
[104] Wilkinson, G. S., & Robertson, G. J. (2006). Wide Range Achievement Test 4 Professional Manual. Lutz, FL: Psychological Assessment Resources.
[105] Willcutt, E. G., Betjemann, R. S., McGrath, L. M., Chhabildas, N. A., Olson, R. K., DeFries, J. C. et al. (2010b). Etiology and Neuropsychology of Comorbidity between RD and ADHD: The Case for Multiple-Deficit Models. Cortex, 46, 1345-1361.
[106] Willcutt, E., Pennington, B., Duncan, L., Smith, S., Keenan, J., Wadsworth, S. et al. (2010a). Understanding the Complex Etiologies of Developmental Disorders: Behavioral and Molecular Genetic Approaches. Journal of Developmental and Behavioral Pediatrics, 31, 533-544.
[107] Wolf, R., Sambataro, F., Lohr, C., Steinbrink, C., Martin, C., & Vasic, N. (2010). Functional Brain Network Abnormalities during Verbal Working Memory Performance in Adolescents and Young Adults with Dyslexia. Neuropsychologia, 48, 309-318.
[108] Woodcock, R. W., McGrew, K. S., & Mather, N. (2001). Examiner’s Manual. Woodcock-Johnson III Tests of Achievement. Itasca, IL: Riverside Publishing.
[109] Zeffiro, T., & Eden, G. (2000). The Neural Basis of Developmental Dyslexia. Annals of Dyslexia, 50, 1-30.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.