[1]
|
Gray III, G.T. (2000) Classic Split Hopkinson Bar Testing. ASM Handbook, Mechanical Testing and Evaluation, 8, 462-476.
|
[2]
|
Hopkinson, B. (1914) A Method of Measuring the Pressure Produced in the Detonation of High Explosives or by the Impact of Bullets. Philosophical Transactions of the Royal Society London Series A, 213, 437-456.
http://dx.doi.org/10.1098/rsta.1914.0010
|
[3]
|
Davies, R.M. (1948) A Critical Study of the Hopkinson Pressure Bar. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 240, 375-457. http://dx.doi.org/10.1098/rsta.1948.0001
|
[4]
|
Kolsky, H. (1949) An Investigation of the Mechanical Properties of Materials at Very High Rates of Strain. Proceedings of the Physical Society, Section B, 62, 676-700. http://dx.doi.org/10.1088/0370-1301/62/11/302
|
[5]
|
Harding, J., Wood, E.O. and Campbell, J.D. (1960) Tensile Testing of Materials at Impact Rates of Strain. Journal of Mechanical Engineering Science, 2, 88-96. http://dx.doi.org/10.1243/JMES_JOUR_1960_002_016_02
|
[6]
|
Lindholm, U.S. and Yeakley, L.M. (1968) High Strain-Rate Testing: Tension and Compression. Experimental Mechanics, 8, 1-9. http://dx.doi.org/10.1007/BF02326244
|
[7]
|
Albertini, C. and Montagnani, M. (1974) Mechanical Properties at High Rates of Strain. Institute of Physics, London, 22.
|
[8]
|
Kawata, K., Hashimoto, S., Kurokawa, K. and Kanayama, N. (1979) A New Testing Method for the Characterization of Materials in High-Velocity Tension. The Institute of Physics, 47, 71-80.
|
[9]
|
Nicholas, T. (1980) Tensile Testing of Materials at High Rates of Strain. Experimental Mechanics, 21, 177-185.
http://dx.doi.org/10.1007/BF02326644
|
[10]
|
Rajendran, A.M. and Bless, S.J. (1986) Determination of Tensile Flow Stress beyond Necking at Very High Strain Rate. Experimental Mechanics, 26, 319-323. http://dx.doi.org/10.1007/BF02320146
|
[11]
|
Staab, G.H. and Gilat, A. (1991) A Direct-Tension Split Hopkinson Bar for High-Strain Rate Testing. Experimental Mechanics, 31, 232-235. http://dx.doi.org/10.1007/BF02322543
|
[12]
|
Li, M., Wang, R. and Han, M.B. (1993) A Kolskey Bar: Tension, Tension-Tension. Experimental Mechanics, 33, 7-14.
http://dx.doi.org/10.1007/BF02322543
|
[13]
|
Melin, L.G., Stahle, P. and Sundin, K.G. (1998) High Strain Rate Tensile Using Microscopic High Speed Photography. 11th International Conference on Experimental Mechanics, Oxford, 24-28 August 1998, 175-179.
|
[14]
|
Chen, W., Lu, F. and Cheng, M. (2002) Tension and Compression Tests of Two Polymers under Quasi-Static and Dynamic Loading. Polymer Testing, 21, 113-121. http://dx.doi.org/10.1016/S0142-9418(01)00055-1
|
[15]
|
Sharma, A., Shukla, A. and Prosser, R.A. (2002) Mechanical Characterization of Soft Materials Using High Speed Photography and Split Hopkinson Pressure Bar Technique. Journal of Materials Science, 37, 1005-1017.
http://dx.doi.org/10.1023/A:1014308216966
|
[16]
|
Gilat, A., Goldberg, R.K. and Roberts, G.D. (2005) Strain Rate Sensitivity of Epoxy Resin in Tensile and Shear Loading. NASA/TM—2005-213595, 1-33.
|
[17]
|
Owens, A.T. and Tippur, H.V. (2009) A Tensile Split Hopkinson Bar for Testing Particulate Polymer Composites under Elevated Rates of Loading. Experimental Mechanics, 47, 799-811. http://dx.doi.org/10.1007/s11340-008-9192-7
|
[18]
|
Chen, R., Dai, F., Lu, L., Lu, F. and Xia, K. (2010) Determination of Dynamic Tensile Properties for Low Strength Brittle Solids. Experimental and Applied Mechanics, 6, 321-326.
|
[19]
|
(2011) Resin Systems for Use in Fiber-Reinforced Composite Materials. Vinyl Ester Resin, Article ID: 986, Source: SP Systems. http://www.azom.com/
|
[20]
|
Ashland Inc. (2011) DERAKANE 510A-40 Epoxy Vinyl Ester Resin. Technical Datasheet, Document 1775V2 F2, Language EN V1, Approved 2008-9-8: 1-4.
|
[21]
|
Shivakumar, K.N., Swaminathan, G. and Sharpe, M. (2006) Carbon Vinyl Ester Composites for Enahanced Performance in Marine Applications. Journal of Reinforced Plastics and Composites, 25, 1101-1116.
http://dx.doi.org/10.1177/0731684406065194
|
[22]
|
Chung, D.D.L. (1987) Exfoliation of Graphite. Journal of Material Science, 22, 4190-4198.
http://dx.doi.org/10.1007/BF01132008
|
[23]
|
Yoshida, A., Hishiyama, Y. and Inagaki, M. (1991) Exfoliated Graphite from Various Intercalation Compounds. Carbon, 29, 1227-1231. http://dx.doi.org/10.1016/0008-6223(91)90040-P
|
[24]
|
Giannelis, E.P. (1996) Polymer Layered Silicate Nanocomposites. Advanced Materials, 8, 29-35.
http://dx.doi.org/10.1002/adma.19960080104
|
[25]
|
Auad, M.L.P., Frontini, M., Borrajo, J. and Aranguren, M.I. (2001) Liquid Rubber Modified Vinyl Ester Resins: Fracture and Mechanical Behavior. Polymer, 42, 3723-3730. http://dx.doi.org/10.1016/S0032-3861(00)00773-4
|
[26]
|
Celzard, A., Schneider, S. and Marêché, J.F. (2002) Densificaton of Expanded Graphite. Carbon, 40, 2185-2191.
http://dx.doi.org/10.1016/S0008-6223(02)00077-5
|
[27]
|
Toshiaki, E., Masatsugu, S. and Morinobu, E. (2003) Graphite Intercalation Compounds and Applications. Oxford University Press, Inc., New York.
|
[28]
|
Frohlich, J., Thomann, R. and Mülhaupt, R. (2003) Toughened Epoxy Hybrid Nanocomposites Containing both an Organophilic Layered Silicate Filler and a Compatibilized Liquid Rubber. Macromolecules, 36, 7205-7211.
http://dx.doi.org/10.1021/ma035004d
|
[29]
|
Yasmin, A. and Daniel, I. (2004) Mechanical and Thermal Properties of Graphite Platelet/Epoxy Composites. Polymer, 45, 8211-8219. http://dx.doi.org/10.1016/j.polymer.2004.09.054
|
[30]
|
Fukushima, H. and Drzal, L.T. (2004) Graphite Nanoplatelets as Reinforcement for Polymers: Structural and Electrical Properties. Proceedings of 17th International Conference on American Society for Composites.
|
[31]
|
Balakrishnan, S., Start, P.R., Raghavan, D. and Hudson, S.D. (2005) The Influence of Clay and Elastomer Concentration on the Morphology and Fracture Energy of Preformed Acrylic Rubber Dispersed Clay Filled Epoxy Nanocomposites. Polymer, 46, 11255-11262. http://dx.doi.org/10.1016/j.polymer.2005.10.053
|
[32]
|
Drzal, L.T. and Fukushima, H. (2006) Exfoliated Graphite Nanoplatelets (Xgnp): A Carbon Nanotube Alternative. The Nanotechnology Conference, Boston, 7-11 May 2006.
|
[33]
|
Lu, J., Do, I., Drzal, L.T., Worden, R.M. and Lee, I. (2008) Nanometal-Decorated Exfoliated Graphite Nanoplatelet Based Glucose Biosensors with High Sensitivity and Fast Response. ACS Nano, 2, 1825-1832.
http://dx.doi.org/10.1021/nn800244k
|
[34]
|
Magableh, A. (2010) Viscoelastic and Shock Response of Nanoclay and Graphite Platelet Reinforced Vinyl Ester Nanocomposites. Ph.D. Dissertation, Department of Mechanical Engineering, University of Mississippi, Oxford.
|
[35]
|
Mantena, P.R., Cheng, A.H.D., Al-Ostaz, A. and Rajendran, A.M. (2010) Blast and Impact Resistant Composite Structures for Navy Ships. Proceedings of Marine Composites and Sandwich Structures, Office of Naval Research—Solid Mechanics Program Review, Adelphi, 27-29 September 2010.
|
[36]
|
Pramanik, B. and Mantena, P.R. (2011) Viscoelastic Response of Graphite Platelet and CTBN Reinforced Vinyl Ester Nanocomposites. Materials Sciences and Applications, 2, 1667-1674. http://dx.doi.org/10.4236/msa.2011.211222
|
[37]
|
Pramanik, B. and Mantena, P.R. (2012) Energy Absorption of Nano-Reinforced and Sandwich Composites in Ballistic and Low-Velocity Punch-Shear. Open Journal of Composite Materials, 2, 87-96.
http://dx.doi.org/10.4236/ojcm.2012.23010
|
[38]
|
Pramanik, B., Tadepalli, T. and Mantena, P.R. (2012) Surface Fractal Analysis for Estimating the Fracture Energy Absorption of Nanoparticle Reinforced Composites. Materials, 5, 922-936. http://dx.doi.org/10.3390/ma5050922
|
[39]
|
Carneiro, F.L.L.B. and Barcellos, A. (1953) Resistance a La Traction Des Betons. Bulletin RILEM, 13, 97-108.
|
[40]
|
Akazawa, T. (1953) Tension Test Method for Concretes. Bulletin RILEM, 16, 13-23.
|
[41]
|
Thimoshenko, S. and Goodier, J.N. (1951) Theory of Elasticity. McGraw-Hill Book Co., Inc., New York, 107-111.
|
[42]
|
Pramanik, B. (2013) High-Strain Rate Tensile Characterization of Graphite Platelet Reinforced Vinyl Ester Nanocomposites Using Split-Hopkinson Pressure Bars. Ph.D. Dissertation, Department of Mechanical Engineering, University of Mississippi, Oxford.
|
[43]
|
Pramanik, B. and Mantena, P.R. (2014) Strain Rate Dependent Ductile-to-Brittle Transition of Graphite Platelet Reinforced Vinyl Ester Nanocomposites. Advances in Materials Science and Engineering, 2014, Article ID: 765698.
http://dx.doi.org/10.1155/2014/765698
|
[44]
|
Precision Ground Bars (2013) Grinding Services—Boston Centerless. http://www.bostoncenterless.com/
|
[45]
|
Awaji, H. and Sato, S. (1979) Diametral Compressive Testing Method. Journal of Engineering Materials and Technology, 101, 139-147. http://dx.doi.org/10.1115/1.3443665
|
[46]
|
Wang, Q.Z., Jia, X.M., Kou, S.Q., Zhang, Z.X. and Lindqvist, P.A. (2004) The Flattened Brazilian Disc Specimen Used for Testing Elastic Modulus, Tensile Strength and Fracture Toughness of Brittle Rocks: Analytical and Numerical Results. International Journal of Rock Mechanics & Mining Sciences, 41, 245-253.
http://dx.doi.org/10.1016/S1365-1609(03)00093-5
|
[47]
|
Wertheimer (1912) Experimentelle Studien über Das Sehen Von Bewegung. Zeitschriftfür Psychologie, 61, 161-265.
|
[48]
|
Chen, R., Xia, K., Dai, F., Lu, F. and Luo, S.N. (2009) Determination of Dynamic Fracture Parameters Using a Semi-Circular Bend Technique in Split Hopkinson Pressure Bar Testing. Engineering Fracture Mechanics, 101, 1268-1276.
http://dx.doi.org/10.1016/j.engfracmech.2009.02.001
|
[49]
|
Frew, D.J., Forrestal, M.J. and Chen, W. (2002) Pulse Shaping Techniques for Testing Brittle Materials with a Split Hopkinson Pressure Bar. Experimental Mechanics, 42, 93-106. http://dx.doi.org/10.1007/BF02411056
|
[50]
|
Chen, R., Dai, F., Qin, J. and Lu, F. (2013) Flattened Brazilian Disc Method for Determining the Dynamic Tensile Stress-Strain Curve of Low Strength Brittle Solids. Experimental Mechanics, 53, 1153-1159.
http://dx.doi.org/10.1007/s11340-013-9733-6
|
[51]
|
(2008) ASTM Standard D 638-08. Standard Test Method for Tensile Properties of Plastics. ASTM International.
|
[52]
|
Yi, F., Zhu, Z., Zu, F., Hu, S. and Yi, P. (2001) Strain Rate Effects on the Compressive Property and the Energy-Absorbing Capacity of Aluminum Alloy Foams. Materials Characterization; 47, 417-422.
http://dx.doi.org/10.1016/S1044-5803(02)00194-8
|