Share This Article:

Threshold Characteristics Enhancement of a Single Mode 1.55 µm InGaAsP Photonic Crystal VCSEL for Optical Communication Systems

Abstract Full-Text HTML XML Download Download as PDF (Size:2763KB) PP. 296-303
DOI: 10.4236/opj.2014.410029    2,670 Downloads   3,164 Views   Citations

ABSTRACT

In the present work, we investigate threshold characteristics of a single mode 1.55 μm InGaAsP vertical cavity surface emitting laser (VCSEL) with two different optical confinement structures. The device employs InGaAsP active region, which is sandwiched between GaAs/AlGaAs and GaAs/AlAs distributed Bragg reflectors (DBRs). The optical confinement introduced by the oxide aperture or a single defect photonic crystal design with holes etched throughout the whole structure, is compared with previous work. Photonic crystal VCSEL shows 30.86% and 57.02% lower threshold current than that of the similar oxide confined VCSEL and previous results, respectively. This paper provides key results of the threshold characteristics, including the threshold current and the threshold power. Results suggest that, the 1.55 μm InGaAsP photonic crystal VCSEL seems to be the most optimal one for light sources in high performance optical communication systems.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Majdabadi, A. , Marjani, S. and Sabaghi, M. (2014) Threshold Characteristics Enhancement of a Single Mode 1.55 µm InGaAsP Photonic Crystal VCSEL for Optical Communication Systems. Optics and Photonics Journal, 4, 296-303. doi: 10.4236/opj.2014.410029.

References

[1] Iga, M.K. (2000) Surface-Emitting Laser—Its Birth and Generation of New Optoelectronic Field. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1201-1215.
http://dx.doi.org/10.1109/2944.902168
[2] Dems, M., Kotynski, R. and Panajotov, K. (2005) Plane Wave Admittance Method—A Novel Approach for Determining the Electromagnetic Modes in Photonic Structures. Optics Express, 13, 3196-3207.
http://dx.doi.org/10.1364/OPEX.13.003196
[3] Kapon, E. and Sirbu, A. (2009) Long-Wavelength VCSELS Power-Efficient Answer. Nature Photonics, 3, 27-29.
http://dx.doi.org/10.1038/nphoton.2008.266
[4] Jung, C., Jager, R., Grabherr, M., Schnitzer, P., Michalzik, R., Weigl, B., Muller, S. and Ebeling, K.J. (1997) 4.8 mW Single-Mode Oxide Confined Topsurface Emitting Vertical-Cavity Laser Diodes. Electronics Letters, 33, 1790-1791.
http://dx.doi.org/10.1049/el:19971207
[5] Morgan, R.A., Guth, G.D., Focht, M.W., Asom, M.T., Kojima, K., Rogers, L.E. and Callis, S.E. (1993) Transverse Mode Control of Vertical-Cavity Top-Surface-Emitting Lasers. IEEE Photonics Technology Letters, 4, 374-377.
http://dx.doi.org/10.1109/68.212669
[6] Long, C.M., Mutter, L., Dwir, B., Mereuta, A., Caliman, A., Sirbu, A., Iakovlev, V. and Kapon, E. (2014) Optical Injection Locking of Transverse Modes in 1.3-μm Wavelength Coupled-VCSEL Arrays. Optics Express, 22, 21137-21144.
http://dx.doi.org/10.1364/OE.22.021137
[7] Zhou, D. and Mawst, L.J. (2002) High-Power Single-Mode Antiresonant Reflecting Optical Waveguide-Type Vertical-Cavity Surface-Emitting Lasers. IEEE Journal of Quantum Electronics, 38, 1599-1606.
http://dx.doi.org/10.1109/JQE.2002.805107
[8] Debernardi, P., Unold, H.J., Maehnss, J., Michalzik, R., Bava, G.P. and Ebeling, K.J. (2003) Single-Mode, Single-Polarization VCSELs via Elliptical Surface Etching: Experiments and Theory. IEEE Journal of Selected Topics in Quantum Electronics, 9, 1394-1404.
http://dx.doi.org/10.1109/JSTQE.2003.819487
[9] Haglund, A., Gustavsson, J.S., Bengtsson, J., Jedrasik, P. and Larsson, A. (2006) Design and Evaluation of Fundamental-Mode and Polarization-Stabilized VCSELs with a Subwavelength Surface Grating. IEEE Journal of Quantum Electronics, 42, 231-240.
http://dx.doi.org/10.1109/JQE.2005.863703
[10] Siriani, D.F., Tan, M.P., Kasten, A.M., Lehman Harren, A.C., Leisher, P.O., Sulkin, J.D., Raftery Jr., J.J., Danner, A.J., Giannopoulos, A.V. and Choquette, K.D. (2009) Mode Control in Photonic Crystal Vertical-Cavity Surface-Emitting Lasers and Coherent Arrays. IEEE Journal of Selected Topics in Quantum Electronics, 15, 909-917.
http://dx.doi.org/10.1109/JSTQE.2008.2012121
[11] De La Rue, R. (2006) Photonic Crystal Components: Harnessing the Power of the Photon. Optics and Photonics News, 17, 30-35.
http://dx.doi.org/10.1364/OPN.17.7.000030
[12] Faez, R., Marjani, A. and Marjani, S. (2011) Design and Simulation of a High Power Single Mode 1550 nm InGaAsP VCSELs. IEICE Electronics Express, 8, 1096-1101.
http://dx.doi.org/10.1587/elex.8.1096
[13] Czyszanowski, T., Dems, M., Sarzala, R., Nakwaski, W. and Panajotov, K. (2011) Precise Lateral Mode Control in Photonic Crystal Vertical-Cavity Surface-Emitting Lasers. IEEE Journal of Quantum Electronics, 99, 1291-1296.
http://dx.doi.org/10.1109/JQE.2011.2159363
[14] Czyszanowski, T., Dems, M., Thienpont, H. and Panajotov, K. (2008) Modal Gain and Confinement Factors in Top- and Bottom-Emitting Photonic-Crystal VCSEL. Journal of Physics D: Applied Physics, 41, Article ID: 085102.
http://dx.doi.org/10.1088/0022-3727/41/8/085102
[15] Czyszanowski, T. (2009) Discrimination of Higher-Order Modes in Photonic-Crystal VCSEL. Proceedings of the IEEE/LEOS Winter Topicals Meeting Series, Innsbruck, 12-14 January 2009, 20-21.
[16] Menon, P.S., Kumarajah, K., Ismail, M., Majlis, B.Y.M. and Shaari, S. (2010) Long-Wavelength MQW Vertical-Cavity Surface Emitting Laser: Effects of Lattice Temperature. Journal of Optical Communications, 31, 81-84.
http://dx.doi.org/10.1515/JOC.2010.31.2.81
[17] SILVACO International Incorporated (2010) ATLAS User’s Manual. Version 5.12.0.R., SILVACO, Inc., USA.
[18] Wenzel, H. and Wunsche, H.-J. (1997) The Effective Frequency Method in the Analysis of Vertical-Cavity Surface-Emitting Lasers. IEEE Journal of Quantum Electronics, 33, 1156-1162.
http://dx.doi.org/10.1109/3.594878
[19] Choquette, K.D., Geib, K.M., Ashby, C.I., Twesten, R.D., Blum, O., Hou, H.Q., Follstaedt, D.M., Hammons, B.E., Mathes, D. and Hull, R. (1997) Advances in Selective Wet Oxidation of AlGaAs Alloys. IEEE Journal of Selected Topics in Quantum Electronics, 3, 916-926.
http://dx.doi.org/10.1109/2944.640645

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.