Trace Elements Distribution in Red Soils under Semiarid Mediterranean Environment

DOI: 10.4236/ijg.2011.22009   PDF   HTML     5,377 Downloads   10,773 Views   Citations


This study states the potential trace elements (TE’s) content of red soils located at the centre region of Spain, characterized by low rainfall and slight acidity over prolonged weathering periods. For this purpose, three soil profiles from a catena were described, sampled and analyzed. The most notable characteristics are the low organic matter content and the predominantly acidic pH. Illite and kaolinite are the predominant clay minerals. The fertility of the soils is sufficient to provide most of the nutrients required, with very suitable potassium levels. The geochemical characters of this soil are: only few elements remain almost invariable across the profiles and over time, however the majority of them were directly linked with the clay content. These soils are characterized by relatively low levels of some trace elements such as Sr (64.35 mg?kg–1), Ba (303.67 mg?kg–1) and Sc (13.14 mg?kg–1); high levels of other trace elements such as V (103.92 mg?kg–1), Cr (79.9 mg?kg–1), Cu (15.18 mg?kg–1), Hf (10.26 mg?kg–1), Ni (38 mg?kg–1) and Zr (337 mg?kg–1); while the levels for rare earth elements (REE’s) such as La (48.36 mg?kg–1), Ce (95.07 mg?kg–1), Th (13.33 mg?kg–1) and Nd (42.65 mg?kg–1) are significantly high. The distribution of mayor and trace elements was directly re- lated to weathering processes, parent material and anthropogenic activities.

Share and Cite:

J. Ortiz-Villajos, F. Navarro, C. Jiménez, C. de los Reyes, R. Moreno and R. Ballesta, "Trace Elements Distribution in Red Soils under Semiarid Mediterranean Environment," International Journal of Geosciences, Vol. 2 No. 2, 2011, pp. 84-97. doi: 10.4236/ijg.2011.22009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. H. Yaalon, “Soils in the Mediterranean Region: What Makes Them Different?” Catena, Vol. 28, No. 3-4, 1997, pp. 157-169. doi:10.1016/S0341-8162(96)00035-5
[2] J. Bech, J. Rustullet, J. Garrigó, F. J. Tobías and R. Martínez, “The Iron Content of Some Red Mediterranean Soils from Northeast Spain and Its Pedogenic Significance,” Catena, Vol. 28, No. 3-4, 1997, pp. 221-229. doi:10.1016/S0341-8162(96)00039-2
[3] J. Torrent and U. Schwertmann, “Influence of Hematite on the Color of Red Beds,” Journal of Sedimentary Research, Vol. 57, No. 4, 1987, pp. 682-686.
[4] V. Boero and U. Schwertmann, “Iron Oxide Mineralogy of Terra Rossa and Its Genetic Implications,” Geoderma, Vol. 44, No. 4, 1989, pp. 319-327. doi:10.1016/0016-7061(89)90039-6
[5] P. Tsaousidou, E. Gartzos, A. Tsagalides, C. Haidouti and D. Gasparatos, “Iron Oxides in Four Red Mediterranean Soils on Metarhyolite and Metadolerite in Kilkis, Gree- ce,” Archives of Agronomy and Soil Science, Vol. 54, No. 2, 2008, pp. 227-235. doi:10.1080/03650340701808922
[6] L. Hidalgo, “Caracterización Macrofísica del Ecosistema Medio-Planta en los Vi?edos Espa?oles,” INIA Ser. Producción Vegetal, Vol. 29, 1980, p. 255.
[7] Food and Agriculture Organization of the United Nations, “World Reference Base for Soil Resources,” World Soil Resources Reports, 2006.
[8] M. A. S. José, I. Rabano, P. Herranz and J. C. Gutierrez, “El Paleozoico Inferior de la Zona Centro-Iberica Meri- dional,” CSIC-University, Extremadura, 1992, pp. 505- 522.
[9] J. A. Amorós, et al., “Main Viticole Soils in Castilla-La Mancha,” Proceedings of 7th International Terroir Con- gress, Nyon, 2008.
[10] J. J. Carlevalis, et al., “La Fertilidad de los Principales Suelos Agrícolas de la Zona Oriental de la Provincia de Ciudad Real La. Mancha y Campo de Montiel,” C.S.I.C. and J.J.C.C. Castilla-La Mancha, Vol. 1, 1992.
[11] I. Atalay, “Red Mediterranean Soils in Some Karstic Regions of Taurus Mountains Turkey,” Catena, Vol. 28, No. 3-4, 1997, pp. 247-260. doi:10.1016/S0341-8162(96)00041-0
[12] J .M. García and F. Santos, “Relationship between the Characteristics of Mediterranean Red Soils and the Age of the Geomorphological Surfaces in Central-Western Spain,” Catena, Vol. 28, No. 3-4, 1997, pp. 231-245. doi:10.1016/S0341-8162(96)00040-9
[13] N. Yassoglou, C. Kosman and N. Moustakas, “The Red Soils, Their Origin, Properties, Use and Management in Greece,” Catena, Vol. 28, No. 3-4, 1997, pp. 261-278. doi:10.1016/S0341-8162(96)00042-2
[14] I. Ortiz, M. Simón, C. Dorronsoro, F. Martín and I. García, “Soil Evolution over the Quaternary Period in a Mediterranean Climate (SE Spain),” Catena, Vol. 48, No. 3, 2002, pp. 131-148. doi:10.1016/S0341-8162(01)00194-1
[15] A. Bronger and S. Sedov, “Vetusols and Paleosols: Natural Versus Man Induced Environmental Change in the Atlantic Coastal Region of Morocco,” Quaternary International, Vol. 106-107, 2003, pp. 33-60. doi:10.1016/S1040-6182(02)00160-X
[16] F. Serrano, et al., “Estudio de Suelos del Campo de Ca- latrava (Ciudad Real) y sus Condiciones de Fertilidad,” CSIC, Vol. 32, 2008, p. 415.
[17] P. Conde, et al., “Trace Elements Contents in Different Soils of a Semiarid Mediterranean Environment: Castilla- -La Mancha, Spain,” Fresenius Environmental Bulletin, Vol. 18, No. 5, 2009, pp. 858-867.
[18] J. A. Amorós, et al., “Description of Red Soils in a Semi-Arid Climate and Evaluation for Vineyard (Vitis Vinifera L.) Use,” Fresenius Environmental Bulletin, Vol. 19, 2010, pp. 1199-1207.
[19] H. R. Rollinson, “Using Geochemical Data: Evaluation, Presentation, Interpretation,” Longman, Singapore, 1993.
[20] A. Martínez, et al., “Distribution of Some Selected Major and Trace Elements in Four Italian Soils Developed from the Deposits of the Gauro and Vico Volcanoes,” Geo- derma, Vol. 117, No. 3-4, 2003, pp. 215-224. doi:10.1016/S0016-7061(03)00124-1
[21] M. B. McBride, “Environmental Chemistry of Soils,” Oxford University Press, Oxford, 1994.
[22] R. Jiménez-Ballesta, P. Conde, J. A. Martín and R. Gar- cía, “Pedogeochemical Baseline Concentration Levels and Soil Quality Reference Values of Trace Elements in Soils of Mediterranean Environment (Castilla-La Mancha, Sp- ain),” Actas VII Congreso Ibérico de Geoquímica, 2009, pp. 315-324.
[23] A. Kabata-Pendias, “Trace Elements in Soils and Plants,” 3rd Edition, CRC Press, Boca Raton, 2001.
[24] J. J. Marques, D. G. Schulze, N. Curi and S. A. Mertzman, “Trace Element Geochemistry in Brazilian Cerrado Soils,” Geoderma, Vol. 121, No. 1-2, 2003, pp. 31-43. doi:10.1016/j.geoderma.2003.10.003
[25] D. Mathieu, M. Bernat and D. Nahon, “Short-Lived U and Th Isotope Distribution in a Tropical Laterite De- rived from Granite (Pitinga River Basin, Amazonia, Bra- zil): Application to Assessment of Weathering Rate,” Ear- th and Planetary Science Letters, Vol. 136, No. 3-4, 1995, pp. 703-714. doi:10.1016/0012-821X(95)00199-M
[26] W. A. Deer, R. A. Howie and J. Zussman, “An Intro- duction to the Rock-Forming Minerals,” Longman, Har- low, 1985.
[27] S. Thanachit, A. Suddhiprakarn, I. Kheoruenromne and R. J. Gilkes, “The Geochemistry of Soils on a Catena on Basalt at Khon Buri, Northeast Thailand,” Geoderma, Vol. 135, 2006, pp. 81-96. doi:10.1016/j.geoderma.2005.10.010
[28] M. E. Hodson, “Experimental Evidence for Mobility of Zr and Other Trace Elements in Soils,” Geochimica et Cosmochimica Acta, Vol. 66, No. 5, 2002, pp. 819-828. doi:10.1016/S0016-7037(01)00803-1
[29] P. Madejón, J. M. Murillo, T. Mara?ón, F. Cabrera and M. A. Soriano, “Trace Element and Nutrient Accumulation in Sunflower Plants two Years after the Aznalcóllar Mine Spill,” The Science of the Total Environment, Vol. 307, No. 1-3, 2003, pp. 239-257.
[30] J. A. Campos, N. A. Tejera and C. J. Sánchez, “Substrate Role in the Accumulation of Heavy Metals in Sporocarps of Wild Fungi,” Biometals, Vol. 22, No. 5, 2009, pp. 835- 841. doi:10.1007/s10534-009-9230-7
[31] SCS-USDA, “Soil Survey Laboratory Methods and Pro- cedures for Collecting Soil Samples,” Soil Survey Inve- stigations Report No. 1, US Govt. Printing Office, Wa- shington DC, 1972.
[32] G. W. Gee and J. W. Bauder, “Particle-Size Analysis,” In: A. Klute, Ed., Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, 2nd Edition, ASA-SSSA, Madison, 1986, pp. 383-411.
[33] S. R. Olsen, C. V. Cole, F. S. Watanabe and L. A. Dean, “Estimation of Available Phosphorus in Soils by Extra- ction with Sodium Bicarbonate,” US Govt. Printing Office, Washington DC, 1953.
[34] D. V. Nelson and L. E. Sommers, “Total Carbon, Organic Carbon and Organic Matter,” In: A. L. Page, R. H. Miller and D. R. Keeney, Eds., Methods of Soil Analysis: Part 2, Chemical and Microbiological Properties, 2nd Edition, American Society of Agronomy and Soil Science Society of America, Madison, 1982, pp. 539-579.
[35] G. W. Thomas, “Exchangeable Cations,” In: A. L. Page, R. Miller and D. Keeney, Eds., Methods of Soil Analysis, Part 2, American Society of Agronomy and Soil Science Society of America, Madison, 1982, pp. 159-165.
[36] J. M. Bremner and C. S. Mulvaney, “Nitrogen Total,” In: A. L. Page, Ed., Methods of Soil Analysis Part 2, Che- mical and Microbiological Properties, American Society of Agronomy and Soil Science Society of America, Ma- dison, 1982, pp. 621-622.
[37] D. M. Moore and R. C. J. Reynolds, “X-Ray Diffraction and the Identification and Analysis of Clay Minerals,” Oxford University Press, Oxford, 1989.
[38] J. B. Dixon, “Roles of Clays in Soils,” Applied Clay Sci- ence, Vol. 5, No. 5-6, 1991, pp. 489-503. doi:10.1016/0169-1317(91)90019-6
[39] A. Wild, “Condiciones del suelo y Desarrollo de las Plan- tas Según Russel,” Mundiprensa, Madrid, 1992.
[40] J. Porta, M. López-Acevedo and R. Poch, “Introducción a la Edafología. Uso y Protección del Suelo,” Mundiprensa, Madrid, 2008.
[41] D. M. Lanyon, A. Cass and D. Hansen, “The Effect of Soil Properties on Vine Performance,” CSIRO Land and Water Technical Report 34/04, 2004.
[42] C. A. Stiles, C. I. Mora and S. G. Driesse, “Pedogenetic Processes and Domain Boundaries in a Vertisol Climo- sequence: Evidence from Titanium and Zirconium Distri- bution and Morphology,” Geoderma, Vol. 116, No. 3-4, 2003, pp. 279-299. doi:10.1016/S0016-7061(03)00105-8
[43] T. Taboada, A. Martínez, C. Garcia and E. Garcia-Rodeja, “Particle Size Fractionation of Titanium and Zirconium during Weathering and Pedogenesis Rocks in NW Spain,” Geoderma, Vol. 131, No. 1-2, pp. 218-236. doi:10.1016/j.geoderma.2005.03.025
[44] F. J. García, J. A. Amorós, C. Sánchez and R. Jiménez- Ballesta, “Red Soil Geochemistry in a Semiarid Mediter- ranean Environment and Its Suitability for Vineyards,” Environmental Geochemistry and Health, Vol. 33, No. 3, 2010, pp. 315-324.
[45] E. A. D. N. Fernandes and F. A. M. Bacchi, “Lanthanides in the Study of Lithologic Discontinuity in Soils from the Piracicaba River Basin,” Journal of Alloys and Com- pounds, Vol. 275-277, 1998, pp. 924-928. doi:10.1016/S0925-8388(98)00486-1
[46] R. J. Ballesta, P. C. Bueno, J. A. M. Rubí and R. G. Giménez, ”Pedo-Geochemical Baseline Content Levels and Soil Quality Reference Values of Trace Elements in Soils from the Mediterranean (Castilla la Mancha, Spain),” Central European Journal of Geosciences, Vol. 2, No. 4, 2010, pp. 441-454. doi:10.2478/v10085-010-0028-1

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.