Development of Upstream Data-Input Models to Estimate Downstream Peak Flow in Two Mediterranean River Basins of Chile

Abstract Full-Text HTML XML Download Download as PDF (Size:4272KB) PP. 132-143
DOI: 10.4236/ojmh.2014.44013    3,834 Downloads   4,536 Views   Citations


Accurate flood prediction is an important tool for risk management and hydraulic works design on a watershed scale. The objective of this study was to calibrate and validate 24 linear and non-linear regression models, using only upstream data to estimate real-time downstream flooding. Four critical downstream estimation points in the Mataquito and Maule river basins located in central Chile were selected to estimate peak flows using data from one, two, or three upstream stations. More than one thousand paper-based storm hydrographs were manually analyzed for rainfall events that occurred between 1999 and 2006, in order to determine the best models for predicting downstream peak flow. The Peak Flow Index (IQP) (defined as the quotient between upstream and downstream data) and the Transit Times (TT) between upstream and downstream points were also obtained and analyzed for each river basin. The Coefficients of Determination (R2), the Standard Error of the Estimate (SEE), and the Bland-Altman test (ACBA) were used to calibrate and validate the best selected model at each basin. Despite the high variability observed in peak flow data, the developed models were able to accurately estimate downstream peak flows using only upstream flow data.

Cite this paper

Pizarro-Tapia, R. , Valdés-Pineda, R. , Olivares, C. and González, P. (2014) Development of Upstream Data-Input Models to Estimate Downstream Peak Flow in Two Mediterranean River Basins of Chile. Open Journal of Modern Hydrology, 4, 132-143. doi: 10.4236/ojmh.2014.44013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] O’Connor, J.E. and Costa, J. (2004) The World’s Largest Floods, Past and Present: Their Causes and Magnitudes. USA Geological Survey Circular 1254, USA Department of the Interior, Washington DC.
[2] Morss, R.E., Wilhelmi, O.V., Downton, M.W. and Gruntfest, E. (2005) Flood Risk, Uncertainty, and Scientific Information for Decision Making: Lessons from an Interdisciplinary Project. Bulletin of the American Meteorological Society, 86, 1593-1601.
[3] Carter, N.T. (2009) Federal Flood Policy Challenges: Lessons from the 2008 Midwest Flood. Congressional Research Service, 7-5700, Washington DC.
[4] Munoz, E., Arumí, J.L. and Vargas, J. (2012) A Design Peak Flow Estimation Method for Medium-Large and Data-Scarce Watersheds with Frontal Rainfall. Journal of the American Water Resources Association, 48, 439-448.
[5] Tucci, C.E.M. and Collischonn, W. (2006) Predicción de crecidas. Boletín de la OMM, 55, 179-184.
[6] Estupina-Borrell, V., Dartus, D. and Ababou, R. (2006) Flash Flood Modeling with the MARINE Hydrological Distributed Model. Hydrology and Earth System Sciences Discussions, 3, 3397-3438.
[7] Linsley, R., Kohler, M. and Paulhus, J. (1986) Hydrology for Engineers. 3rd Edition, McGraw-Hill Publications, New York.
[8] Soil Conservation Service (SCS) (1964) National Engineering Handbook, Section 4: Hydrology. Department of Agriculture, Washington DC, 450 p.
[9] Soil Conservation Service (SCS) (1972) National Engineering Handbook, Section 4: Hydrology. Department of Agriculture, Washington DC, 762 p.
[10] Titmarsh, G., Cordery, I. and Piligrim, D. (1995) Calibration Procedures for Rational and USSCS Design Flood Methods. Journal of Hydraulic Engineering, 121, 61-70.
[11] Chow, V.T. (1964) Handbook of Applied Hydrology. McGraw-Hill Publications, New York.
[12] Dirección General de Aguas (DGA) (1995) Manual de cálculo de crecidas y caudales mínimos en cuencas sin información fluviométrica.
[13] Verni, F. and King, H. (1977) Estimación de crecidas en cuencas no controladas. III Coloquio, Sociedad Chilena de Ingeniería Hidráulica, Santiago, 357-374.
[14] Stehr, A., Aguayo, M., Link, O., Parra, O., Romero, F. And Alcayaga, H. (2010) Modeling the Hydrologic Response of a Mesoscale Andean Watershed to Changes in Land Use Patterns for Environmental Planning. Hydrology and Earth System Sciences, 14, 1963-1977.
[15] Inzunza, J. (2005) Clasificación de los Climas de Koppen. Revista Ciencia Ahora, 15, 14.
[16] Falvey, M. and Garreaud, R. (2007) Wintertime Precipitation Episodes in Central Chile: Associated Meteorological Conditions and Orographic Influences. Journal of Hydrometeorology, 8, 171-193.
[17] Biblioteca del Congreso Nacional de Chile (BCN) (2014) Región del Maule.
[18] Dirección General de Aguas (DGA) (2004) Diagnóstico y Clasificación de los Cursos y Cuerpos de Agua Según Objetivos de Calidad: Cuenca Río Mataquito.
[19] Dirección General de Aguas (DGA) (2004) Diagnóstico y Clasificación de los Cursos y Cuerpos de Agua Según Objetivos de Calidad: Cuenca del Río Maule. Ministerio de Obras Públicas, Gobierno de Chile.
[20] Valdés-Pineda, R., Pizarro, R., García-Chevesich, P., Valdés, J.B., Olivares, C., Vera, M., Balocchi, F., Pérez, F., Vallejos, C., Fuentes, R., Abarza, A. and Helwig, B. (2014) Water Governance in Chile: Availability, Management and Climate Change. Journal of Hydrology, in Press.
[21] Dirección General de Aguas (DGA) (2008) Informe técnico: Análisis crecida río Mataquito y tributarios 22 y 23 de mayo de 2008. Ministerio de Obras Públicas de Chile, Santiago.
[22] Llamas (1993) Hidrología General. Edición espanola, Servicio Editorial Universidad del País Vasco, 635 p.
[23] Bland, J. and Altman, D. (1999) Measuring Agreement in Method Comparison Studies. Statistical Methods in Medical Research, 8, 135-160.
[24] Waylen, P. and Caviedes, C. (1990) Annual and Seasonal Fluctuations of Precipitations and Stream Flow in the Aconcagua River Basin, Chile. Journal of Hydrology, 120, 79-102.
[25] Caviedes, C. and Waylen, P. (1998) Respuesta del clima de América del Sur a las fases de ENSO. Bulletin de l’Institut Francais d’études Andines, 27, 613-626.
[26] Vicuna, S., Gironás, J., Meza, F., Cruzat, M., Jelinek, M. and Poblete, D. (2011) When Hydrologic Extremes Are Not Driven by Climatic Extremes: Exploring a Climate Change Hydrologic Extreme Attribution Example in South Central Chile. Fall Meeting 2011, Abstract#GC51E-1044, American Geophysical Union, Washington DC.
[27] Rubio-álvarez, E. and McPhee, J. (2010) Patterns of Spatial and Temporal Variability in Stream Flow Records in South Central Chile in the Period 1952-2003. Water Resources Research, 46, 16.
[28] Martínez, C., Fernández, A. and Rubio, P. (2012) Caudales y variabilidad climática en una cuenca de latitudes medias en Sudamérica: Río Aconcagua, Chile central (33°S). Boletín de la Asociación de Geógrafos Espanoles, 58, 227-248.
[29] Pizarro, R., Araya, S., Jordán, C., Farías, C., Flores, J.P. and Bro, P. (2006) The Effects of Changes in Vegetative Cover on River Flows in the Purapel River Basin of Central Chile. Journal of Hydrology, 327, 249-257.
[30] Iruomé, A., Mayen, O. and Huber, A. (2006) Runoff and Peak Flow Responses to Timber Harvest and Forest Age in Southern Chile. Hydrological Processes, 20, 37-50.
[31] Wheater, H.S. (2002) Progress and Prospects for Fluvial Flood Modeling. Philosophical Transactions of the Royal Society A, 360, 1409-1431.
[32] Hunter, N., Bates, P., Horrit, M., De Roo, P.J. and Werner, M. (2005) Utility of Different Data Types for Calibrating Flood Inundation Models within a GLUE Framework. Hydrology and Earth System Sciences, 9, 412-430.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.