Combined Selection in Backcross Population of Papaya (Carica papaya L.) by the Mixed Model Methodology


The selection of superior genotypes based on the simultaneous response to several characteristics of agronomic importance is a key strategy to overcome the scarcity of available varieties of papaya. This study aimed to apply the combined selection by using distinct selection indexes based on both the genetic values obtained by the REML/BLUP methodology and the real measured values to select agronomically superior genotypes of papaya within backcross progenies. The combined selection was carried out based on genetic and phenotypic values, original and standardized, multiplied by the agronomic weights. The results of the analysis of genetic parameters indicate that the evaluated progenies have expressive genetic variability for the considered traits, and that there are real possibilities of genetic progress with the selection. Among the analyzed indexes, the one based on standardized genetic value presented greater consistency in the ranking of genetic material, demonstrating the advantage of data standardization. Five progenies belonging to the BC1 generation, and five to the BC3 generation were selected using this index. A total of 27 plants ag-ronomically superior were selected within the top five progenies and recommended for generation advance, 23 being selected by combined selection and 4 using the direct selection for the four mainly characters in papaya breeding program: production, pulp and fruit firmness and soluble solids. Beyond the selection of superior genotypes for the development of future inbred lines, this study also allowed defining the best strategy to apply the combined selection in papaya using pre-dicted breeding values obtained by BLUP. This strategy may allow higher accuracy in the selection process, thus increasing the chances of success of the breeding programs.

Share and Cite:

Cancela Ramos, H. , Pereira, M. , Viana, A. , da Luz, L. , Cardoso, D. and Ferreguetti, G. (2014) Combined Selection in Backcross Population of Papaya (Carica papaya L.) by the Mixed Model Methodology. American Journal of Plant Sciences, 5, 2973-2983. doi: 10.4236/ajps.2014.520314.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Sharon, D., Hillel, J., Vainstein, A. and Lavi, U. (1992) Application of DNA Fingerprints for Identification and Genetic Analysis of Carica papaya and Other Carica Species. Euphytica, 62, 119-126.
[2] Stiles, J.I., Lemme, C., Sondur, S., Morshidi, M.B. and Manshardt, R. (1993) Using Randomly Amplified Polymorphic DNA for Evaluating Genetic Relationships among Papaya Cultivars. Theoretical Applied Genetics, 85, 697-701.
[3] Kim, M.S., Moore, P.H., Zee, F., Fitch, M.M.M., Steiger, D.L., Paull, R.E., Drew, R.A., Sekioka, T. and Ming, R. (2002) Genetic Diversity of Carica papaya as Revealed by AFLP Markers. Genome, 45, 503-512.
[4] Ruggiero, C., Marin, S.L.D. and Durigan, J.F. (2011) Mamão, Uma História de Sucesso. Revista Brasileira de Fruticultura, S1,76-82.
[5] Marin, S.L.M., Pereira, M.G., AmaralJúnior, A.T., Martelleto, L.A.P. and Ide, C.D. (2006) Heterosis in Papaya Hybrids from Partial Diallel of “Solo” and “Formosa” Parents. Crop Breeding and Applied Biotechnology, 6, 24-29.
[6] Silva, F.F., Pereira, M.G., Campos, W.F., Damasceno Júnior, P.C., Pereira, T.N.S., Souza Filho, G.A., Ramos, H.C.C., Viana, A.P. and Ferreguetti, G.A. (2007) DNA Marker-Assisted Sex Conversion in Elite Papaya Genotype (Carica papaya L.). Crop Breeding Applied Biotechnology, 7, 52-58.
[7] Damasceno Junior, P.C., Costa, F.R., Pereira, T.N.S., Freitas Neto, M. and Pereira, M.G. (2009) Karyotype Determination in Three Caricaceae Species Emphasizing the Cultivated Form (C. papaya L.). Caryologia, 62, 10-15.
[8] Ramos, H.C.C., Pereira, M.G., Silva, F.F. and Viana, A.P. (2011) Seasonal and Genetic Influences on Sexual Expression in Segregating Papaya Population Derived From Backcross. Crop Breeding Applied Biotechnology, 11, 97-105.
[9] Pinto, F.O., Luz, L.N., Pereira, M.G., Cardoso, D.L. and Ramos, H.C.C. (2013) Metodologia dos Modelos Mistos para Seleção Combinada em Progênies Segregantes de Mamoeiro. Revista Brasileira de Ciências Agrárias, 8, 211-217.
[10] Smith, H.F. (1936) A Discriminant Function for Plant Selection. Annals of Eugenics, 7, 240-250.
[11] Hazel, L.N. (1943) The Genetic Basis for Constructing Selection Indexes. Genetics, 28, 476-490.
[12] Pedrozo, C.A., Benites, F.R.G., Barbosa, M.H.P., Resende, M.D.V. and Silva, F.L. (2009) Efficiency of Selection Indexes Using the REML/BLUP Procedure in Sugarcane Breeding. Scientia Agraria, 10, 31-36.
[13] Resende, M.D.V. (2002) Genética Biométrica e Estatística no Melhoramento de Plantas Perenes. Embrapa Informação Tecnológica, Brasília.
[14] Piepho, H.P., Mohring, J., Melchinger, A.E. and Buchse, A. (2008) BLUP for Phenotypic Selection in Plant Breeding and Variety Testing. Euphytica, 161, 209-228.
[15] Henderson, C.R. (1975) Best Linear Unbiased Estimation and Prediction under a Selection Model. Biometrics, 31, 423-447.
[16] Crossa, J., Burgueño, J., Comelius, P.L., McLaren, G., Trethowan, R. and Krishnamachari, A. (2006) Modeling Genotype × Environment Interaction Using Additive Genetic Covariances of Relatives for Predicting Breeding Values of Wheat Genotypes. Crop Science, 46, 1722-1733.
[17] Wolf, J., Duchateau, L. and Schrevens, E. (2008) Dealing with Source of Variability in the Data-Analysis of Phenotyping Experiments with Transgenic Rice. Euphytica, 160, 325-337.
[18] Costa, R.B., Resende, M.D.V., Gonçalves, P.S., Arruda, E.J., Oliveira, L.C.S. and Bortoletto, N. (2002) Prediction of Genotypic Values for Yield in Rubber Tree-Clone Test Trials Using REML/BLUP Procedure. Crop Breeding and Applied Biotechnology, 2, 579-586.
[19] Nunes, J.A.R., Ramalho, M.A.P. and Ferreira, D.F. (2008) Inclusion of Genetic Relationship Information in the Pedigree Selection Method Using Mixed Models. Genetics and Molecular Biology, 31, 73-78.
[20] Chiorato, A.F., Carbonell, S.A.M., Dias, L.A.S. and Resende, M.D.V. (2008) Prediction of Genotypic Values and Estimation of Genetic Parameters in Common Bean. Brazilian Archives of Biology and Technology, 51, 465-472.
[21] Storey, W.B. (1958) Modifications of Sex Expression in Papaya. Horticultural Advance, 2, 49-60.
[22] Silva, F.F., Pereira, M.G., Ramos, H.C.C., Damasceno Júnior, P.C., Pereira, T.N.S., Gabriel, A.P.C., Viana, A.P. and Ferreguetti, G.A. (2008) Selection and Estimation of the Genetic Gain in Segregating Generations of Papaya (Carica papaya L.). Crop Breeding Applied Biotechnology, 8, 1-8.
[23] Elston, R.C. (1963) A Weight-Free Index for the Purpose of Ranking of Selection with Respect Several Traits at a Time. Biometrics, 19, 85-97.
[24] Subandi, W., Compton, A. and Empig, L.T. (1973) Comparison of the Efficiencies of Selection Indices for Three Trails in Two Variety Crosses of Corn. Crop Science, 13, 184-186.
[25] Mulamba, N.N. and Mock, J.J. (1978) Improvement of Yield Potential of the Eto Blanco Maize (Zea mays L.) Population by Breeding for Plant Traits. Egyptian Journal of Genetics and Cytology, 1, 40-51.
[26] Resende, M.D.V. (2007) Matemática e Estatística na Análise de Experimentos e no Melhoramento Genético. Embrapa Floresta, Colombo, Brasil.
[27] Resende, M.D.V. (2002) Software SELEGEN—REML/BLUP. Embrapa Florestas, Colombo, Brasil.
[28] Ferrão, R.G., Cruz, C.D., Ferreira, A., Cecon, P.R., Ferrão, M.A.G., Fonseca, A.F.A., Carneiro, P.C.S. and Silva, M.F. (2008) Parametros Genéticos em Café Conilon. Pesquisa Agropecuária Brasileira, 43, 61-69.
[29] Silva, F.F., Pereira, M.G., Ramos, H.C.C., Damasceno Júnior, P.C., Pereira, T.N.S., Viana, A.P., Daher, R.F. and Ferreguetti, G.A. (2008) Estimation of Genetic Parameters Related to Morphoagronomic and Fruit Quality Traits of Papaya. Crop Breeding and Applied Biotechnology, 8, 65-73.
[30] Ramos, H.C.C., Pereira, M.G., Gonçalves, L.S.A., Berilli, A.P.C.G., Pinto, F.O. and Ribeiro, E.H. (2012) Multivariate Analysis to Determine the Genetic Distance among Backcross Papaya (Carica papaya) Progenies. Genetics and Molecular Research, 11, 1280-1295.
[31] Venkovsky, R. (1987) Herança Quantitativa. In: Paterniani, E. and Viegas, G.P., Eds., Melhoramento e Produção do Milho, Fundação Cargill, Campinas, 420 p.
[32] Resende, M.D.V. and Duarte, J.B. (2007) Precisão e Controle de Qualidade em Experimentos de Avaliação de Cultivares. Pesquisa Agropecuária Tropical, 37, 182-194.
[33] Resende, M.D.V. (2007) SELEGEN-REML/BLUP: Sistema Estatístico e Seleção Genética Computadorizada via Modelos Lineares Mistos. Embrapa Florestas, Colombo, Brasil.
[34] Falconer, D.S. (1987) Introdução à Genética Quantitativa. Universidade Federal de Viçosa, Viçosa, 279 p.
[35] Barbosa, M.H.P., Resende, M.D.V., Bressiani, J.A., Silveira, L.C.I. and Peternelli, L.A. (2005) Selection of Sugarcane Families and Parents by Reml/Blup. Crop Breeding and Applied Biotechnology, 5, 443-450.
[36] Resende, M.D.V. and Barbosa, M.H.P. (2006) Selection via Simulated BLUP Based on Family Genotypic Effects in Sugarcane. Pesquisa Agropecuária Brasileira, 41, 421-429.
[37] Carvalho, A.D.F., Neto, R.F. and Geraldi, I.O. (2008) Estimation and Prediction of Parameters and Breeding Values in Soybean Using REML/BLUP and Least Squares. Crop Breeding and Applied Biotechnology, 8, 219-224.
[38] Paiva, J.R., Cordeiro, E.R., Corrêa, M.C.M. and Resende, M.C.V. (2007) Acerola Plant Selection and Breeding Value Prediction in Second Selection Cycle Progenies. Crop Breeding and Applied Biotechnology, 7, 125-132.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.