[1]
|
Pike, M., et al. (1980) Bias and Efficiency in Logistic Analyses of Stratified Case-Control Studies. International Journal of Epidemiology, 9, 89-95. http://dx.doi.org/10.1093/ije/9.1.89
|
[2]
|
Genkin, A., Lewis, D.D. and Madigan, D. (2007) Large-Scale Bayesian Logistic Regression for Text Categorization. Technometrics, 49, 291-304. http://dx.doi.org/10.1198/004017007000000245
|
[3]
|
Cao, J. and Zhang, S. (2010) Measuring Statistical Significance for Full Bayesian Methods in Microarray Analyses. Bayesian Analysis, 5, 413-427. http://dx.doi.org/10.1214/10-BA608
|
[4]
|
Li, J., et al. (2011) The Bayesian Lasso for Genome-Wide Association Studies. Bioinformatics, 27, 516-523.
http://dx.doi.org/10.1093/bioinformatics/btq688
|
[5]
|
Bae, K. and Mallick, B.K. (2004) Gene Selection Using a Two-Level Hierarchical Bayesian Model. Bioinformatics, 20, 3423-3430. http://dx.doi.org/10.1093/bioinformatics/bth419
|
[6]
|
Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society Series B, 58, 267-288.
|
[7]
|
Madahian, B., Deng, L.Y. and Homayouni, R. (2014) Application of Sparse Bayesian Generalized Linear Model to Gene Expression Data for Classification of Prostate Cancer Subtypes. Open Journal of Statistics, 4, 518-526.
http://dx.doi.org/10.4236/ojs.2014.47049
|
[8]
|
Wu, T.T., et al. (2009) Genome-Wide Association Analysis by Lasso Penalized Logistic Regression. Bioinformatics, 25, 714-721. http://dx.doi.org/10.1093/bioinformatics/btp041
|
[9]
|
Yang, J., et al. (2010) Common SNPs Explain a Large Proportion of the Heritability for Human Height. Nature Reviews Genetics, 42, 565-569. http://dx.doi.org/10.1038/ng.608
|
[10]
|
Madsen, H. and Thyregod, P. (2011) Introduction to General and Generalized Linear Models. Chapman & Hall/CRC, Boca Raton.
|
[11]
|
Gelfand, A. and Smith, A.F.M. (1990) Sampling-Based Approaches to Calculating Marginal Densities. Journal of the American Statistical Association, 85, 398-409. http://dx.doi.org/10.1080/01621459.1990.10476213
|
[12]
|
Gilks, W.R., Richardson, S. and Spiegelhalter, D. (1995) Markov Chain Monte Carlo in Practice. Chapman and Hall/CRC, London.
|
[13]
|
Leopold, E. and Kindermann, J. (2002) Text Categorization with Support Vector Machines. How to Represent Texts in InPut Space? Machine Learning, 46, 423-444. http://dx.doi.org/10.1023/A:1012491419635
|
[14]
|
Kim, H., Howland, P. and Park, H. (2005) Dimension Reduction in Text Classification with Support Vector Machines. Journal of Machine Learning Research, 6, 37-53.
|
[15]
|
Joachims, T. (1998) Text Categorization with Support Vector Machines: Learning with Many Relevant Features. Springer, Berlin Heidelberg.
|
[16]
|
Guyon, I., et al. (2002) Gene Selection for Cancer Classification Using Support Vector Machines. Machine Learning, 46, 389-422. http://dx.doi.org/10.1023/A:1012487302797
|
[17]
|
Weston, J., et al. (2002) Feature Selection for SVMs. Advances in Neural Information Processing Systems. MIT Press, Cambridge.
|
[18]
|
Blei, D.M. (2012) Probabilistic Topic Models. Communications of the ACM, 55, 77-84.
http://dx.doi.org/10.1145/2133806.2133826
|
[19]
|
Blei, D.M., Ng, A.Y. and Jordan, M.I. (2003) Latent Dirichlet Allocation. The Journal of Machine Learning Research, 3, 993-1022.
|
[20]
|
Schmidt, B. (2013) Sapping Attention: Keeping the Words in Topic Models.
http://sappingattention.blogspot.com/2013/01/keeping-words-in-topic-models.html
|
[21]
|
Weingart, S.B. (2012) Topic Modeling for Humanists: A Guided Tour.
http://www.scottbot.net/HIAL/?p=19113
|
[22]
|
Wedderburn, R.W.M. (1974) Quasi-Likelihood Functions, Generalized Linear Models, and the Gauss-Newton Method. Biometrika, 61, 439-447.
|
[23]
|
Jennrich, R.I. and Sampson, P.F. (1976) Newton-Raphson and Related Algorithms for Maximum Likelihood Variance Component Estimation. Technometrics, 18, 11-17. http://dx.doi.org/10.2307/1267911
|
[24]
|
Hastie, T., Tibshirani, R. and Friedman, J. (2009) Linear Methods for Regression. Springer, New York.
|
[25]
|
Hoerl, A.E. and Kennard, R.W. (1970) Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics, 12, 55-67. http://dx.doi.org/10.1080/00401706.1970.10488634
|
[26]
|
Li, Z. and Sillanpää, M.J. (2012) Overview of LASSO-Related Penalized Regression Methods for Quantitative Trait Mapping and Genomic Selection. Theoretical and Applied Genetics, 125, 419-435.
http://dx.doi.org/10.1007/s00122-012-1892-9
|
[27]
|
Knight, K. and Fu, W. (2000) Asymptotics for Lasso-Type Estimators. The Annals of Statistics, 28, 1356-1378.
http://dx.doi.org/10.1214/aos/1015957397
|
[28]
|
Yuan, M. and Lin, Y. (2005) Efficient Empirical Bayes Variable Selection and Estimation in Linear Models. Journal of the American Statistical Association, 100, 1215-1225. http://dx.doi.org/10.1198/016214505000000367
|
[29]
|
Zou, H. (2006) The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical Association, 101, 1418- 1429. http://dx.doi.org/10.1198/016214506000000735
|
[30]
|
Zou, H. and Li, R. (2008) One-Step Sparse Estimates in Non-Concave Penalized Likelihood Models. The Annals of Statistics, 36, 1509-1533. http://dx.doi.org/10.1214/009053607000000802
|
[31]
|
Park, T. and Casella, G. (2008) The Bayesian Lasso. Journal of the American Statistical Association, 103, 681-686.
http://dx.doi.org/10.1198/016214508000000337
|
[32]
|
Hans, C. (2009) Bayesian Lasso Regression. Biometrika, 96, 835-845. http://dx.doi.org/10.1093/biomet/asp047
|
[33]
|
Griffin, J.E. and Brown,P.J. (2007) Bayesian Adaptive Lassos with Non-Convex Penalization. Technical Report, IMSAS, University of Kent, Canterbury.
|
[34]
|
Albert, J. and Chib, S. (1993) Bayesian Analysis of Binary and Polychotomous Response Data. Journal of the American Statistical Association, 88, 669-679. http://dx.doi.org/10.1080/01621459.1993.10476321
|
[35]
|
Bae, K. and Mallick, B.K. (2004) Gene Selection Using a Two-Level Hierarchical Bayesian Model. Bioinformatics, 20, 3423-3430. http://dx.doi.org/10.1093/bioinformatics/bth419
|
[36]
|
Chen, J., et al. (2006) Decision Threshold Adjustment in Class Prediction. SAR and QSAR in Environmental Research, 17, 337-352. http://dx.doi.org/10.1080/10659360600787700
|
[37]
|
Altman, D.G. and Bland, J.M. (1994) Diagnostic Tests 1: Sensitivity and Specificity. British Medical Journal, 308, 1552. http://dx.doi.org/10.1136/bmj.308.6943.1552
|
[38]
|
Karatzoglou, A., Meyer, D. and Hornik, K. (2005) Support Vector Machines in R. Journal of Statistical Software, 15, 1-28.
|
[39]
|
Karatzoglou, A., et al. (2004) Kernlab—An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11, 1-20.
|
[40]
|
Williams, P.M. (1995) Bayesian Regularization and Pruning Using a Laplace Prior. Neural Computation, 7, 117-143.
http://dx.doi.org/10.1162/neco.1995.7.1.117
|