Recent Trends in Producing Ultrafine Grained Steels

Abstract

Ultrafine grained steels with grain sizes below about 1 μm offer the prospect of high strength and high toughness with traditional steel compositions. These materials are currently the subject of extensive research efforts worldwide. Alloy design is one of the first considered issues, while designing new steel with targeted mechanical properties. However, the alloying content of steel does not fully determine the mechanical properties, but manufacturing procedure, hot rolling and cooling parameters, heat treatment parameters etc. are also of vital importance. For instance, same steel with different processing conditions can exhibit rather large variations in properties. To be precise, chemical composition with the processing parameters determines the microstructure, which in turn determines the properties of the steel. Steel is defined as an iron alloy containing C, Mn and Si that are generally used as alloying elements in steel. Micro-alloying elements such as Nb, Ti V, and B, are considered to be effective, causing strengthening as well as microstructural refinement in small quantities below 0.1 wt% (therefore these are called micro-alloy elements) and are quite generally used in ultrafine grain steel. Substitution alloying elements, such as Mo, Ni, Cr and Cu are alloyed to suppress phase transformation temperatures, i.e. for reaching certain level of strengthening, since the strength of steel structures strongly depends on the phase transformation temperature. Accordingly, the alloy design of ultrafine grains steels with different structures generally relies on: i) carbon levels, ii) sufficient alloying to obtain the desired transformation temperature and iii) micro-alloying technology in conjunction with Thermo Mechanical Controlled Processes (TMCP). Also, both advanced thermo-mechanical processes and severe plastic deformation strategies are used to produce ultrafine grained steels. Both approaches are suited to produce submicron grain structures with attractive mechanical properties. This overview describes the various techniques to fabricate ultrafine grained steels.

Share and Cite:

Halfa, H. (2014) Recent Trends in Producing Ultrafine Grained Steels. Journal of Minerals and Materials Characterization and Engineering, 2, 428-469. doi: 10.4236/jmmce.2014.25047.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Misra, R., Nathani, H., Hartmann, J. and Siciliano, F. (2005) Microstructural Evolution in a New 770 MPa Hot Rolled Nb-Ti Microalloyed Steel. Materials Science and Engineering A, 394, 339-352.
http://dx.doi.org/10.1016/j.msea.2004.11.041
[2] Zajac, S., Komenda, J., Morris, P., Matera, S. and Penalba Diaz, F. (2003) Quantitative Structure-Property Relationships for Complex Bainitic Microstructure. RFCS Final Report, European Commission, Luxembourg.
[3] Charleux, M., Poole,WJ., Militzer, M. and Deschamps, A.(2001) Precipitation Behavior and Its Effect on Strengthening of an HSLA-Nb/Ti Steel. Metallurgical and Materials Transactions A, 32, 1635-1647. http://dx.doi.org/10.1007/s11661-001-0142-6
[4] Foreman, J.E. and Makin, A.J. (1967) Dislocation Movement through Random Arrays of Obstacles. Canadian Journal of Physics, 45, 7-12. http://dx.doi.org/10.1139/p67-044
[5] Thermo-Calc, Ver, P. and Thermo-Calc, A.B. (2002) article. Royal Institute of Technology, Stockholm.
[6] Gladman, T. (1997) The Physical Metallurgy of Microalloyed Steels. The Institute of Materials, London, United Kingdom.
[7] Syarif, J., Nakashima, K., Tsuchiyama, T. and Setsuo, T. (2007) Effect of Solute Copper on Yield Strength in Dislocation-Strengthened Steels. Iron and Steel Institute of Japan (ISIJ) International, 47, 340-345. http://dx.doi.org/10.2355/isijinternational.47.340
[8] Siwecki, T., Blaz, L. and Petterson, S. (2000) Improving Properties in V-Nb Microalloyed Steels Modified with Mo. HSLA Steels 2000, Xi’an, China, 30 October-2 November, 2000, Beijing, 504-510.
[9] Misra, R., Weatherley, G., Hartmann, J. and Boucek, A. (2001) Ultrahigh Strength Hot Rolled Microalloyed Steels: Microstructural Aspects of Development. Materials Science Technology, 17, 1119-1129. http://dx.doi.org/10.1179/026708301101511040
[10] Kelly, A. and Nicholson, R.B. (1971) Strengthening Methods in Crystals. Applied Science Publishers Ltd., London, United Kingdom.
[11] Zajac, S., Lagneborg, R. and Siwecki, T. (1995) The Role of Nitrogen in Microalloyed Steels. Proceedings of the International Conference on “Microalloying 95”, Pittsburgh, 11-14 June 1995, 321-340.
[12] Lagneborg, R., Siwecki, T., Zajac, S. and Hutchinson, B. (1999) The Role of Vanadium in Microalloyed Steel. Scandinavian Journal of Metallurgy, 28, 186-241.
[13] Baker, R.G. and Nutting, J. (1969) The Tempering of Cr-Mo-V-W and Mo-V Steel Precipitation Processes in Steels. ISI Report, 64, 1-12.
[14] Kunitake, T. (1967) On the Yield Strength of Quenched and Tempered Structures of Low-Carbon, Low Alloy Steels. Transaction of the Iron and Steel Institute of Japan, 7, 254-262.
[15] Bhadeshi, H. (2001) Bainite in Steels. IOM Communication Ltd., London.
[16] Takahashi, M. and Bhadeshia, H. (1990) Model for Transition from Upper to Lower Bainite. Materials Science and Technology, 6, 592-603. http://dx.doi.org/10.1179/mst.1990.6.7.592
[17] Wang, J. and Zwaag, S. (1990) Stabilization Mechanisms of Retained Austenite in Transformation-Induced Plasticity Steel. Metallurgical and Materials Transactions A, 21, 1527-1539.
[18] Hulka, K. and Heisterkamp, F. (1993) Low Carbon Steels the Key to Economic Constructions. International Symposium on Low-Carbon Steels for the 90’s, Pittsburgh, 18-21 October 1993, 211-218.
[19] Morrison, W. (2000) Past and Future Development of HSLA Steels. HSLA Steels 2000, Xi’an, China, Beijing, 30 October-2 November 2000, 11-19.
[20] ssKrauss, G. and Thompson, S. (1995) Ferritic Microstructures in Continuously Cooled Low- and Ultralow-Carbon Steels. Iron and Steel Institute of Japan (ISIJ) International, 35, 937-945.
http://dx.doi.org/10.2355/isijinternational.35.937
[21] Morrison, W. (1996) The Effect of Grain Size on the Stress-strain Relationship in Low Carbon Steel. Transactions of American Society for Metals, 59, 824-846.
[22] Shin, D., Park, J., Chang, S., Lee, Y. and Park, K. (2002) Ultrafine Grained Low Carbon Steels Fabricated by Equal Channel Angular Pressing. Iron and Steel Institute of Japan (ISIJ) International, 42, 1490-1496. http://dx.doi.org/10.2355/isijinternational.42.1490
[23] Fukuda, Y., Oh-Ishi, K., Horita, Z. and Langdon, T. (2002) Processing of a Low-Carbon Steel by Equal-Channel Angular Pressing. Acta Materialia, 50, 1359-1368. http://dx.doi.org/10.1016/S1359-6454(01)00441-4
[24] Son,Y., Lee, Y., Park, K., Lee, C. and Shin, D. (2005) Ultrafine Grained Ferrite-Martensite Dual Phase Steels Fabricated via Equal Channel Angular Pressing: Micro-Structure and Tensile Properties. Acta Materialia, 53, 3125-3134. http://dx.doi.org/10.1016/j.actamat.2005.02.015
[25] Park, K., Han, S., Ahn, B., Shin, D., Lee, Y. and Um, K. (2004) Ultrafine Grained Dual Phase Steel Fabricated by Equal Channel Angular Pressing and Subsequent Intercritical Annealing. Scripta Materialia, 51, 909-913. http://dx.doi.org/10.1016/j.scriptamat.2004.06.017
[26] Kim, W., Kim, J., Choo, W., Hong, S. and Lee, J. (2001) Large Strain Hardening in Ti-V Carbon Steel Processed by Equal Channel Angular Pressing. Materials Letters, 51, 177-182.
http://dx.doi.org/10.1016/S0167-577X(01)00320-2
[27] Shin, D., Seo, C., Kim, J., Park, K. and Choo, W. (2000) Microstructures and Mechanical Properties of Equal-Channel Angular Pressed Low Carbon Steel. Scripta Materialia, 42, 695-699.
http://dx.doi.org/10.1016/S1359-6462(99)00422-4
[28] Liu, M., Shi, B., Wang, C., Ji, S., Cai, X. and Song, H. (2003) Normal Hall-Petch Behavior of Mild Steel with Submicron Grains. Materials Letters, 57, 2798-2802. http://dx.doi.org/10.1016/S0167-577X(02)01377-0
[29] Song, R. (2005) Microstructure and Mechanical Properties of Ultrafine Grained C-Mn Steels. Shaker Verlag GmbH, Aachen.
[30] Brozzo, P., Buzzichelli, A., Mascanzoni, A. and Mirabile, G. (1977) Microstructure and Cleavage Resistance of Low Carbon Bainitic Steels. Metal Science, 11, 123-130. http://dx.doi.org/10.1179/msc.1977.11.4.123
[31] Tomita, Y. and Okabayashi, K. (1986) Effect of Microstructure on Strength and Toughness of Heat-Treated Low Alloy Structural Steels. Metallurgical Transactions A, 17, 1203-1209.
http://dx.doi.org/10.1007/BF02665319
[32] Lazarova, R., Petrov, R.H., Gaydarova, V., Davidkov, A., Alexeev, A. and Manchev, M. (2011) Microstructure and Mechanical Properties of P265GH Cast Steel after Modification with TiCN Particles. Materials & Design, 32, 2734-2741. http://dx.doi.org/10.1016/j.matdes.2011.01.024
[33] Rasouli, D., Khameneh Asl, S., Akbarzadeh, A. and Daneshi, G. (2009) Optimization of Mechanical Properties of a Micro Alloyed Steel. Materials & Design, 30, 2167-2172.
http://dx.doi.org/10.1016/j.matdes.2008.08.024
[34] Zhao, M., Yang, K. and Shan, Y. (2003) Comparison on Strength and Toughness Behaviors of Microalloyed Pipeline Steels with Acicular Ferrite and Ultrafine Ferrite. Material Letters, 57, 1496-1500.
http://dx.doi.org/10.1016/S0167-577X(02)01013-3
[35] Zhao, M., Shan, Y. and Yang, K. (2004) Effect of Aging Treatment on Mechanical Property and H2S Resistant Behavior of Acicular Ferrite Pipeline Steels. Acta Metallurgica Sinica, 40, 948-954. http://www.ams.org.cn/CN/Y2004/V40/I9/948
[36] Tóth, L., Rossmanith , H.P. and Siewert, T.A. (2002) Historical Background and Development of the Charpy Test. European Structural Integrity Society: From Charpy To Present Impact Testing, 30, 3-19. http://dx.doi.org/10.1016/S1566-1369(02)80002-4
[37] Zhao, M., Li, J., Zeng, T., Hunag, X., Zhao, Y. and Atrens, A. (2011) The Ductile to Brittle Transition for C-Mn Steel with an Ultrafine Grain Ferrite/Cementite Microstructure. Materials Science and Engineering A, 528, 7228-7237. http://dx.doi.org/10.1016/j.msea.2011.06.005
[38] Hanamura, T., Yin, F.X. and Nagai, K. (2004) Ductile-Brittle Transition Temperature of Ultrafine Ferrite/Cementite Microstructure in a Low Carbon Steel Controlled by Effective Grain Size. Iron and Steel Institute of Japan (ISIJ) International, 44, 610-617. http://dx.doi.org/10.2355/isijinternational.44.610
[39] Song, R., Ponge, D., Raabe, D., Speer, J. and Matlock, D. (2006) Overview of Processing, Microstructure and Mechanical Properties of Ultrafine Grained bcc Steels. Materials Science and Engineering A, 441, 1-17. http://dx.doi.org/10.1016/j.msea.2006.08.095
[40] Song, R., Ponge, D. and Raabe, D. (2005) Mechanical Properties of an Ultrafine Grained C-Mn Steel Processed by Warm Deformation and Annealing. Acta Materialia, 53, 4881-4892.
http://dx.doi.org/10.1016/j.actamat.2005.07.009
[41] Kimura, Y., Inoue, T., Yin, F. and Tsuzaki. K. (2008) Inverse Temperature Dependence of Toughness in an Ultrafine Grain-Structure Steel. Science, 320, 1057-1060. http://dx.doi.org/10.1126/science.1156084
[42] National Highway Traffic Safety Administration (2007) DOT HS 810 863. www.nhtsa.gov .
[43] Euro NCAP (1998) Development of the European New Car Assessment.
http://www.euroncap.com/files/Development-of-Euro-NCAP-1998---0-7498ffa2-36b6-4328-8b6e-f44fe5d35563.pdf
[44] Kim, S., Kim, G. and Chin, K. (2008) Development of High Manganese TWIP Steel with 980 MPa Tensile Strength. Proceeding of the International. Conference on New Developments in Advanced High-Strength Sheet Steels, AIST. Orlando, 15-18 June 2008, 249-256.
[45] Boron Extrication (2009) XC60 Body Structure. http://boronextrication.com/2009/08/2009-xc60-body-structure/.
[46] Shim, J., Cho, H., Chung, S., Shim, J. and Lee, D. (1999) Nucleation of Intragranular Ferrite at Ti2O3 Particle in Low Carbon Steel. Acta Materialia, 47, 2751-2760. http://dx.doi.org/10.1016/S1359-6454(99)00114-7
[47] Calcagnotto, M., Adachi,Y. Ronge, D. and Raabe, D. (2011) Deformation and Fracture Mechanisms in Fine- and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging. Acta Materialia, 59, 658-670. http://dx.doi.org/10.1016/j.actamat.2010.10.002
[48] Song, R., Ponge, D., Raabe, D. Speer, J. and Matlock, D. (2006) Overview of Processing, Microstructure and Mechanical Properties of Ultrafine Grained BCC Steels. Materials Science and Engineering A, 441, 1-17. http://dx.doi.org/10.1016/j.msea.2006.08.095
[49] Song, R., Ponge, D. and Raabe, D. (2005) Mechanical Properties of an Ultrafine Grained C-Mn Steel Processed by Warm Deformation and Annealing. Acta Materialia, 53, 4881-4892.
http://dx.doi.org/10.1016/j.actamat.2005.07.009
[50] Funakawa, Y., Shiozaki, T., Tomita, K., Yamamoto, T. and Maeda, E. (2004) Development of High Strength Hot-Rolled Sheet Steel Consisting of Ferrite and Nanometer-Sized Carbides. Iron and Steel Institute of Japan (ISIJ) International, 44, 1945-1951. http://dx.doi.org/10.2355/isijinternational.44.1945
[51] Fernández, J., Illescas, S. and Guilemany, J. (2007) Effect of Microalloying Elements on the Austenitic Grain Growth in a Low Carbon HSLA steel. Materials Letters, 61, 2389-2392.
http://dx.doi.org/10.1016/j.matlet.2006.09.021
[52] Medina, S. and Hernanden, C. (1995) Static Recrystallization of Austenite and Strain Induced Precipitation Kinetics in Titanium Microalloyed Steels. Acta Metallurgica, 42, 3945-3951.
http://dx.doi.org/10.1016/0956-7151(94)90172-4
[53] Elwazri, A., Wanjara, P. and Yue, S. (2003) Dynamic Recrystallization of Austenite in Microalloyed High Carbon Steels. Materials Science and Engineering A, 339, 209-215. http://dx.doi.org/10.1016/S0921-5093(02)00164-8
[54] Fernández, A., Uranga, P., López, B. and Rodriguez-Ibabe, J. (2003) Dynamic Recrystallization Behavior Covering a Wide Austenite Grain Size Range in Nb and Nb-Ti Microalloyed Steels. Materials Science and Engineering A, 361, 367-376. http://dx.doi.org/10.1016/S0921-5093(03)00562-8
[55] Liang. X., Sun, X. and Liu. Q. (2006) Study of Dynamic Recrystallization of Low Carbon Steel in Thin Slab Continuous Rolling Process. Acta Metallurgica Sinica, 19, 265-270. http://dx.doi.org/10.1016/S1006-7191(06)60054-9
[56] Pickering, F. (1990) Some Beneficial Effects of Nitrogen in Steel. In: Korchynsky, M., Gorczyca, S. and Blicharski, M., Eds., Proceedings of International Symposium Microalloyed Vanadium Steels, Cracow, 24-26 April 1990, 33-62.
[57] Korczynsky, M. (1988) Microalloying and Thermo-Mechanical Treatment. In: DeArdo, A.J., Ed., Proceedings of International Symposium Processing, Microstructure and Properties of HSLA Steels, Pittsburgh, 1-3 September 1988, 169-201.
[58] Pickering, F. (1985) Vanadium as a Hardenability and Temperability Additive in Quenched and Tempered Steels. In: Gray, J.M., et al., Eds., Proceedings of an International Conference on HSLA Steels 85, Beijing, 4-8 November 1985, 305-324.
[59] Renata, S., Henryk, A. and Anna, A. (2006) Effect of Nitrogen and Vanadium on Austenite Grain Growth Kinetics of a Low Alloy Steel. Materials Characterization, 56, 340-347.
http://dx.doi.org/10.1016/j.matchar.2005.09.012
[60] Melloy, G., Slimmon, P. and Podgursky, P. (1973) Optimization the Boron Effect. Metallurgical and Materials Transactions A, 4, 2279-2289. http://dx.doi.org/10.1007/BF02669367
[61] Matlock, D., Krauss, G. and Speer, J. (2005) New Microalloyed Steel Applications for the Automotive Sector. Materials Science Forum, 500-501, 87-96. http://dx.doi.org/10.4028/www.scientific.net/MSF.500-501.87
[62] Klinkenberg, C. and Jansto, J. (2006) International Conference on New Development in Ferrous and Forged Products. TMS, Winter Park, CO., Colorado.
[63] Ebrahimi, G., Javdani, M. and Arabshahi, H. (2010) Effect of Thermo-Mechanical Parameters on Microstructure and Mechanical Properties of Microalloyed Steels. Brazilian Journal of Physics, 40, 454-458. http://dx.doi.org/10.1590/S0103-97332010000400017
[64] Ghosh, P., Ray, R.K., Ghosh, C. and Bhattacharjee, D. (2008) Comparative Study of Precipitation Behavior and Texture Formation in Continuously Annealed Ti and Ti + Nb Added Interstitial-Free High-Strength Steels. Scripta Materialia, 58, 939-942. http://dx.doi.org/10.1016/j.scriptamat.2008.01.056
[65] Hong, S., Jun, H., Kang, K. and Park, C. (2003) Evolution of Precipitates in the Nb-Ti-V Microalloyed HSLA Steels during Reheating. Scripta Materialia, 48, 1201-1206. http://dx.doi.org/10.1016/S1359-6462(02)00567-5
[66] Ghosh, P., Ghosh, C., Ray, R. and Bhattacharjee, D. (2008) Precipitation Behavior and Texture Formation at Different Stages of Processing in an Interstitial Free High Strength Steel. Scripta Materialia, 59, 276-268. http://dx.doi.org/10.1016/j.scriptamat.2008.03.044
[67] Adamczyk, J., Kalinowska-Ozgowicz, E., Ozgowicz, W. and Wusatowski, R. (1995) Interaction of Carbonitrides V(C, N) Undissolved in Austenite on the Structure and Mechanical Properties of Microalloyed V-N Steels. Journal of Materials Processing Technology, 53, 23-32.
http://dx.doi.org/10.1016/0924-0136(95)01958-H
[68] Matsuo, S., Ando, T. and Grant, N. (2000) Grain Refinement and Stabilization in Spray-Formed AISI 1020 Steel. Materials Science and Engineering A, 288, 34-41. http://dx.doi.org/10.1016/S0921-5093(00)00881-9
[69] Tomita, Y. and Okabayashi, K. (1986) Effect of Microstructure on Strength and Toughness of Heat-Treated Low Alloy Structural Steels, Metallurgical and Materials Transactions A, 17, 1203-1209.
[70] Lazarova, R., Petrov, R.H., Gaydarova, V., Davidkov, A., Alexeev, A., Manchev, M., and Manolov, M. (2011) Microstructure and Mechanical Properties of P265GH Cast Steel after Modification with TiCN Particles. Materials & Design, 32, 2734-2741. http://dx.doi.org/10.1016/j.matdes.2011.01.024
[71] Rasouli, D., Khameneh Asl, S.H., Akbarzadeh, A. and Daneshi, G.H. (2009) Optimization of Mechanical Properties of a Microalloyed Steel. Materials & Design, 30, 2167-2172.
http://dx.doi.org/10.1016/j.matdes.2008.08.024
[72] Andrade, H., Akben, M. and Jonas, J. (1983) Effect of Molybdenum, Niobium, and Vanadium on Static Recovery and Recrystallization and on Solute Strengthening in Microalloyed Steels. Metallurgical and Materials Transactions A, 14, 1967-1977. http://dx.doi.org/10.1007/BF02662364
[73] Craven, A., He, K., Garvie, L. and Baker, T. (2000) Complex Heterogeneous Precipitation in Titanium-Niobium Microalloyed Al-Killed HSLA Steels—I. (Ti, Nb) (C, N) Particles. Acta Materialia, 48, 3857-3868. http://dx.doi.org/10.1016/S1359-6454(00)00194-4
[74] Charleux, M., Poole, W., Militzer, M. and Deschamps, A. (2001) Precipitation Behavior and Its Effect on Strengthening of an HSLA-Nb/Ti Steel. Metallurgical and Materials Transactions A, 32, 1635-1647. http://dx.doi.org/10.1007/s11661-001-0142-6
[75] Xu, G., Gan, X., Ma, G., Luo, F. and Zou, H. (2010) The Development of Ti-Alloyed High Strength Microalloy Steel. Materials & Design, 31, 2891-2896. http://dx.doi.org/10.1016/j.matdes.2009.12.032
[76] Jia, Z., Misra,R., O’Malley, R. and Jansto, SJ. (2011) Fine-Scale Precipitation and Mechanical Properties of Thin Slab Processed Titanium-Niobium Bearing High Strength Steels. Materials Science and Engineering A, 528, 7077-7083. http://dx.doi.org/10.1016/j.msea.2011.05.073
[77] Farahat, A. and El-Bitar, T. (2010) Effect of Nb, Ti and Cold Deformation on Microstructure and Mechanical Properties of Austenitic Stainless Steels. Materials Science and Engineering A, 527, 3662-3669. http://dx.doi.org/10.1016/j.msea.2010.02.064
[78] Soto, R., Saikaly, W., Bano, X., Issartel, C., Rigaut, G. and Charai, A. (1999) Statistical and Theoretical Analysis of Precipitates in Dual-Phase Steels Microalloyed with Titanium and Their Effect on Mechanical Properties. Acta Materialia, 47, 3475-3481. http://dx.doi.org/10.1016/S1359-6454(99)00190-1
[79] Regone, W., Jorge, A. and Balancin, O. (2003) Evidence of Strain-Induced Precipitation of Ti4C2S2 during Hot Deformation of Ti-Only Stabilized IF Steel. Scripta Materialia, 48, 773-778.
http://dx.doi.org/10.1016/S1359-6462(02)00532-8
[80] Zener, C. and Smith, C. (1948) Grains, Phases and Interfaces: Interpretation of Microstructures. Transaction metallurgy Society of AIME, 175, 15-51.
[81] He, K. and Baker, T. (1993) The Effects of Small Ti Additions on the Mechanical Properties and the Microstructures of Controlled Niobium-Bearing HSLA Plate. Materials Science and Engineering A, 169, 53-65. http://dx.doi.org/10.1016/0921-5093(93)90598-9
[82] Moon, J., Kim, S., Lee, J. and Lee, C. (2007) Limiting Austenite Grain Size of TiN-Containing Steel Considering the Critical Particle Size. Scripta Materialia, 56, 1083-1086.
http://dx.doi.org/10.1016/j.scriptamat.2007.02.025
[83] Wu, K., Zhang, L., He, X., Shang, C., Yang, S. and Wang, X. (2006) Micro Mechanical Properties and Stability of Acicular Ferrite in a Low Carbon Microalloyed Steel. Acta Metallurgica Sinica, 42, 19-22.
[84] Poths, R., Higginson, R. and Palmiere, E. (2001) Complex Precipitation Behaviour in a Microalloyed Plate Steel. Scripta Materialia, 44, 147-151. http://dx.doi.org/10.1016/S1359-6462(00)00617-5
[85] Suikkanen, P., Kömi, J. and Karjalainen, L. (2005) Processing Low and Ultra-Low Carbon Bainitic Steels with Excellent Property Combinations. Proceedings of the International Conference on Microalloying for New Steel Processes and Applications. Donostia-San Sebastian, 7-9 September, 2005, 535-542.
[86] Asahi, H., Hara, T. and Sugiyama, M. (2004) Metallurgical Design of Ultra-High Strength Steels for Gas Pipelines. International Journal of Offshore and Polar Engineering, 14, 11-17.
[87] Wang, M. and He, X. (2002) Effect of Boron Addition on Structure and Properties of. Low Carbon Bainitic Steels. Iron and Steel Institute of Japan (ISIJ) International, 42, S38-S46.
[88] Misra, R., Tenneti, K., Weatherly, G. and Tither, G. (2003) Microstructure and Texture of Hot-Rolled Cb-Ti and V-Cb Microalloyed Steels with Differences in Formability and Toughness. Metallurgical and Materials Transactions A, 34, 2341-2351. http://dx.doi.org/10.1007/s11661-003-0297-4
[89] Babbit, M., Valette, P. and Riguat, G. (1991) Development of a New Bainitic Steel With Very High Yield Strength at SOLLAC. In: DeArdo, A.J. (Ed.), Processing Microstructure and Properties of Microalloyed and Other Modern High Strength Low Alloy Steels. Iron and Steel Society, 3-6 June 1991, Pittsburgh, 281-288.
[90] Ochi, T., Takahashi, T. and Takada, H. (1988) Improvement of the Toughness of Hot Forged Products through Intragranular Ferrite Formation. Proceedings of 30th Mecahnical Working and Steel Proceing Conference, 23-27 October 1988, Dearborn, 65-72.
[91] Wang, K., Wang, L. and Cui, W. (2006) Effect of V and V-N Microalloying on Deformation-Induced Ferrite Transformation in Low Carbon Steels. Journal of Materials Science & Technology, 22, 159-163. (in Chinese). http://www.jmst.org/EN/Y2006/V22/I02/159
[92] Zhao, S., Wang, Q., Pant, U., Zhang, C., Su, H., Yang, C., Yan, Z. and Zhang, Y. (2007) Fundamental Evaluations on Microstructure and Mechanical Properties of On-Line Normalizing Processed V-N Microalloyed N80 Class Oil Casings. Journal of Iron and Steel Research International, 14, 227-233. http://dx.doi.org/10.1016/S1006-706X(08)60084-9
[93] Ollilainen, V., Kasprzak, W. and Holappa, L. (2003) The Effect of Silicon, Vanadium and Nitrogen on the Microstructure and Hardness of Air Cooled Medium Carbon Low Alloy Steels. Journal of Materials Processing Technology, 134, 405-412. http://dx.doi.org/10.1016/S0924-0136(02)01131-7
[94] Adamczyk, J. (2006) Development of the Microalloyed Constructional Steels. Journal of Achievements in Materials and Manufacturing Engineering, 14, 9-20
[95] Wei, H., Liu, G., Zhao, H. and Zhang, M. (2014) Effect of Carbon Content on Hot Deformation Behaviors of Vanadium Microalloyed Steels. Materials Science and Engineering A, 596, 112-120.
http://dx.doi.org/10.1016/j.msea.2013.12.063
[96] Sellars, C. and Whiteman, J. (1979) Recrystallization and Grain Growth in Hot Rolling. Metal Science, 13, 187-194. http://dx.doi.org/10.1179/msc.1979.13.3-4.187
[97] Grange, RG. (1971) The Rapid Heat Treatment of Steel. Metallurgical Transactions, 2, 65-78.
http://dx.doi.org/10.1007/BF02662639
[98] Kolesnik, B.P. (1964) Rapid Heat Treatment of Mn-Si Pipe Steel. Metal Science and Heat Treatment, 6, 100-104. http://dx.doi.org/10.1007/BF00655386
[99] Yao, J., Du, X. and Liu, X. (2009) Isothermal Growth Kinetics of Ultra-fine Austenite Grains in a Nb-V-Ti Microalloyed Steel. Journal of Materials Science & Technology, 25, 615-618.
[100] Tokizane, M., Ameyama, K. and Takao, K. (1988) Ultra-Fine Austenite Grain Steel Produced by Thermomechanical Processing. Scripta Metallurgica, 22, 697-701. http://dx.doi.org/10.1016/S0036-9748(88)80185-6
[101] Furuhara, T., Kikumoto, K., Saito, H., Sekine, T., Ogawa, T., Morito, S. and Maki, T. (2008) Phase Transformation from Fine-Grained Austenite. Iron and Steel Institute of Japan (ISIJ) International, 48, 1038-1045.
[102] Grange, R. (1966) Strengthening by Austenite Grain Refinement. Transaction of the American Society Metals, 1, 26-29.
[103] Anashkin, A., Belov, A., Sokolov, A., Bogatov, A. and Smirnov, S. (1987) Heat Cycling of Carbon Steel Wire. Metal Science and Heat Treatment, 30, 93-97.
[104] Fedyukin, V. (1984) Thermal Cycling Treatment of Steels and Cast Irons. Leningrad State University, Leningrad.
[105] Koppehaal, T. (1972) A Thermal Processing for TRIP Steel. Metallurgical and Materials Transactions A, 3, 1549-1554. http://dx.doi.org/10.1007/BF02643045
[106] Konopleva, E., éntin, R., Bayazitov, V. and Okoemov, Y. (1988) Thermal Cycling Treatment of Low-Carbon Steel with Hardening from Intercritical Temperature Range. Metal Science and Heat Treatment, 8, 617-620. http://dx.doi.org/10.1007/BF00778269
[107] Bhadeshia, H. (1992) Bainite in Steel. The Institute of Materials 1 Carlton House Terrace, London.
[108] Wada, T. and Eldis, G. (1982) Transformation Characteristic of 2.25Cr-1Mo Steel, Application of 2.25Cr-1Mo Steel for Thick-Wall Pressure Vessels. ASTM STP 755, American Society for Testing Materials, Philadelphia, 343-362.
[109] Kimmins, S. and Gooch, D. (1983) Austenite Memory Effect in 1Cr-1Mo-0.75 V (Ti, B) Steel. Materials Science and Technology, 17, 519-532.
[110] Wang, Q., Zhang, C., Xu, W., Zhao, J., Zhao, S. and Yanz, S. (2007) Refinement of Steel Austenite Grain Under an Extremely High Degree of Superheating. Journal of Iron and Steel Research International, 14, 161-166. http://dx.doi.org/10.1016/S1006-706X(08)60072-2
[111] Howe, A. (2009) Industry Perspective on Ultrafine Grained Steels. Journal of Materials Science & Technology, 24, 815-819. http://dx.doi.org/10.1179/174328409X441247
[112] Niikura, N., Fujioka, M., Adachi, A., Matsukura, A., Yokota, T. and Shirota, Y. (2001) New Concepts for Ultrarefinement of Grain Size in Super Metal Project. JMPT 2001, 117, 141-146.
[113] Beladi, H., Kelly, G., Shokouhi, A. and Hodgson, P. (2004) The Evolution of Ultrafine Ferrite Formation through Dynamic Strain-Induced Transformation. Materials Science and Engineering A, 371, 343-352. http://dx.doi.org/10.1016/j.msea.2003.12.024
[114] Abdollah-Zadeh, A. and Eghbali, B (2007) Mechanism of Ferrite Grain Refinement during Warm Deformation of a Low Carbon Nb-Microalloyed Steel. Materials Science and Engineering A, 457, 219-225. http://dx.doi.org/10.1016/j.msea.2006.12.022
[115] Najafi-Zadeh, A., Jonas, J. and Yue, S. (1992) Grain Refinement by Dynamic Recrystallization during the Simulated Warm-Rolling of Interstitial Free Steels. Metallurgical and Materials Transactions A, 23, 2607-2617. http://dx.doi.org/10.1007/BF02658064
[116] Murty, S., Torizuka, S. and Nagai, K. (2005) Ferrite Grain Size Formed by Large Strain-High Deformation in a 0.15C Steel. Materials Transactions, 46, 2454-2460. http://dx.doi.org/10.2320/matertrans.46.2454
[117] Ueji, R., Tsuji, N., Minamino, Y. and Koizumi, Y. (2002) Ultra-Grain Refinement of Plain Low Carbon Steel by Cold-Rolling and Annealing of Martensite. Acta Materialia, 50, 4177-4189.
http://dx.doi.org/10.1016/S1359-6454(02)00260-4
[118] Tsuji, N. and Maki, T. (2009) Enhanced Structural Refinement by Combining Phase Transformation and Plastic Deformation in Steels. Scripta Materialia, 60, 1044-1049.
http://dx.doi.org/10.1016/j.scriptamat.2009.02.028
[119] Hase, K. and Tsuji, N. (2011) Effect of Initial Microstructure on Ultrafine Grain Formation through Warm Deformation in Medium-Carbon Steels. Scripta Materialia, 65, 404-407.
http://dx.doi.org/10.1016/j.scriptamat.2011.05.018
[120] DeArdo, A. (1995) Modern Thermomechanical Processing of Microalloyed Steel: A Physical Metallurgy Perspective. Proceedings of Microalloying 95 Conference, Pittsburgh, 11-14 June 1995, 15-33.
[121] Tanaka, T. (1981) Controlled Rolling of Steel Plate and Strip. International Metals Revision, 26, 185-212. http://dx.doi.org/10.1179/imr.1981.26.1.185
[122] Jonas, J. and Sellars, C. (1992) Thermomechanical Processing. In: Charles, J.A., Greenwood, G.W. and Smith, G.S. Eds., Future Development of Metals and Ceramics, Woodhead Publishing Limited, Cambridge.
[123] Jonas, J. and Yue, S. (1990) Microstructural Evolution during Hot Rolling. Proceedings of the International Symposium on Mathematical Modeling of Hot Rolling of Steel, Hamilton, 26-29 August 1990, 99-118.
[124] Dutta, B., Palmiere, E.J. and Sellars, C.M. (2001) Modelling the Kinetics of Strain Induced Precipitation in Nb Microalloyed Steels. Acta Materialia, 49, 785-794. http://dx.doi.org/10.1016/S1359-6454(00)00389-X
[125] Dutta, B. and Palmiere, E.J. (2003) Effect of Prestrain and Deformation Temperature on the Recrystallization Behavior of Steels Microalloyed with Niobium. Metallurgical and Materials Transactions A, 34, 1237-1247. http://dx.doi.org/10.1007/s11661-003-0234-6
[126] Alberto, M., Luiz, H. and Oscar, B. (2012) Ultra Grain Refinement during the Simulated Thermo-Mechanical Processing of Low Carbon Steel, The Journal of Materials Research and Technology, 1, 141-147. http://dx.doi.org/10.1016/S2238-7854(12)70025-X
[127] Speich, G., Demarest, V. and Miller, R. (1981) Formation of Austenite during Intercritical Annealing of Dual-Phase Steels. Metallurgical and Materials Transactions A, 12, 1419-1428.
http://dx.doi.org/10.1007/BF02643686
[128] Oliveira, M., Jorge, J. and Balancin, O. (2004) Influence of Strain-Induced Nucleation on the Kinetics of Phase Transformation in a Forging Steel during Warm Working. Scripta Materialia, 50, 1157-1162. http://dx.doi.org/10.1016/j.scriptamat.2004.01.011
[129] Rezaee, A., Kermanpur, A., Najafizadeh, A. and Moallemi, M. (2011) Production of Nano/Ultrafine Grained AISI 201L Stainless Steel through Advanced Thermo-Mechanical Treatment. Materials Science and Engineering A, 528, 5025-5029. http://dx.doi.org/10.1016/j.msea.2011.02.093
[130] Farnoosh, F., Abbas, N., Kermanpur, K., Ali, H. and Roohallah. S. (2010) Production of Nano/Submicron Grained AISI 304L Stainless Steel through the Martensite Reversion Process. Materials Science and Engineering A, 527, 7334-7339. http://dx.doi.org/10.1016/j.msea.2010.08.002
[131] Moallemi, M., Kermanpur, A., Najafizadeh, A., Rezaee, A. and Samaei baghbadorani, H. (2012) Formation of Nano/Ultrafine Grain Structure in a 201 Stainless Steel Through the Repetitive Martensite Thermomechanical Treatment. Materials Letters, 89, 22-24.
http://dx.doi.org/10.1016/j.matlet.2012.08.058
[132] Eskandari, M., Najafizadeh, A., Kermanpur, A. and Karimi, M. (2009) Potential Application of Nanocrystalline 301 Austenitic Stainless Steel in Lightweight Vehicle Structures. Materials and Design, 30, 3869-3872. http://dx.doi.org/10.1016/j.matdes.2009.03.043
[133] Momeni, A. and Abbasi, S. (2011) Repetitive Thermomechanical Processing towards Ultra Fine Grain Structure in 301, 304 and 304L Stainless Steels. The Journal of Materials Research and Technology, 27, 338-343. http://dx.doi.org/10.1016/S1005-0302(11)60071-6
[134] Pickering, F. (1978) Physical Metallurgy and the Design of Steels. Applied Science Publishers, London.
[135] Al-Hajeri, K. (2005) The Grain Coarsening and Subsequent Transformation of Austenite in the HSLA Steel during High Temperature Thermomechanical Processing. University of Pittsburgh, Pittsburgh, 15-16.
[136] Tanaka, T. (1995) Science and Technology of Hot Rolling Process of Steel. Proceedings of the International Conference on “Microalloying 95”, Pittsburgh, 11-14 June 1995, 165-181.
[137] Llewellyn, D. (1992) Steels: Metallurgy and Applications. Butterworth-Heinemann Reading, London.
[138] Cohen, C. and Hansen, S. (1985) On the Fundamentals of HSLA Steels, HSLA Steels. Metallurgy and Applications, Conference Proceeding, ASM International, Beijing, 4-8 November 1985, 61-71.
[139] Gray, J. and DeArdo, A. (1985) Austenite Conditioning Alternatives for Microalloyed Steels Products. HSLA Steels, Metallurgy and Applications, Conference Proceeding, ASM International, Beijing, 4-8 November 1985, 83-96.
[140] Palmiere, E., Garcia, C. and DeArdo, A. (1994) Compositional and Microstructural Changes Which Attend Reheating and Grain Coarsening in Steels Containing Niobium. Metallurgical and Materials Transactions A, 25, 277-286. http://dx.doi.org/10.1007/BF02647973
[141] Priestner, R. and Hodgson, P.D. (1992) Ferrite Grain Coarsening during Transformation of Thermomechanically Processed C-Mn-Nb Austenite. The Journal of Materials Research and Technology, 8, 849-854. http://dx.doi.org/10.1179/mst.1992.8.10.849
[142] Hodgson, P.D., Hickson, M.R. and Gibbs, R.K. (1998) The Production and Mechanical Properties of Ultrafine Ferrite. Materials Science Forum, 284-286, 63-72. http://dx.doi.org/10.4028/www.scientific.net/MSF.284-286.63
[143] Hurley, P.J., Muddle, B.C. and Hodgson, P.D. (2002) The Production of Ultrafine Ferrite during Hot Torsion Testing of a 0.11 wt pct C Steel. Metallurgical and Materials Transactions A, 33, 2985-2993. http://dx.doi.org/10.1007/s11661-002-0283-2
[144] Beladi, H., Kelly, G., Shokouhi, A. and Hodgson, P.D. (2004) The Evolution of Ultrafine Ferrite Formation through Dynamic Strain-Induced Transformation. Materials Science and Engineering A, 371, 343-352. http://dx.doi.org/10.1016/j.msea.2003.12.024
[145] Priestner, R. and Ibraheem, A.K. (2000) Processing of Steel for Ultrafine Ferrite Grain Structures. Journal of Materials Science & Technology, 16, 1267-1272. http://dx.doi.org/10.1179/026708300101507497
[146] Azevedo, G., Barbosa, R., Pereloma, E.V. and Santos, D. B. (2005) Development of an Ultrafine Grained Ferrite in a Low C-Mn and Nb-Ti Microalloyed Steels after Warm Torsion and Intercritical Annealing. Materials Science and Engineering A, 402, 98-108. http://dx.doi.org/10.1016/j.msea.2005.04.026
[147] Beladi, H., Kelly, G., Shokouhi, A. and Hodgson, P. (2004) Effect of Thermomechanical Parameters on the Critical Strain for Ultrafine Ferrite Formation through Hot Torsion Testing. Materials Science and Engineering A, 367, 152-161. http://dx.doi.org/10.1016/j.msea.2003.09.095
[148] Yada, H., Li, C.M. and Yamagata, H. (2000) Dynamic γ → α Transformation during Hot Deformation in Iron-Nickel-Carbon Alloys. Iron and Steel Institute of Japan (ISIJ) International, 40, 200-206.
http://dx.doi.org/10.2355/isijinternational.40.200
[149] Chang, y., Kim, N. and Lee, C. (2007) Deformation Induced Ferrite Transformation in Microalloyed Steels: Theory and Application. Materials Science Forum, 561-565, 2491-2508.
[150] Matsumura, H. and Yada, Y. (1987) Evolution of Ultrafine-Grained Ferrite in Hot Successive Deformation. Transactions of the Iron and Steel Institute of Japan, 27, 492-498.
http://dx.doi.org/10.2355/isijinternational1966.27.492
[151] Calcagnotto, M., Ponge, D. and Raabe, D. (2008) Ultrafine Grained Ferrite/Martensite Dual Phase Steel Fabricated by Large Strain Warm Deformation and Subsequent Intercritical Annealing. Iron and Steel Institute of Japan (ISIJ) International, 48, 1096-1101. http://dx.doi.org/10.2355/isijinternational.48.1096
[152] Calcagnotto, M., Ponge, D. and Raabe, D. (2010) Effect of Grain Refinement to 1 μm on Strength and Toughness of Dual-phase Steels. Materials Science and Engineering A, 527, 7832-7840. http://dx.doi.org/10.1016/j.msea.2010.08.062
[153] Eduardo D., Akira, Y. and Jun, Y. (2014) Modeling Static and Dynamic Kinetics of Microstructure Evolution in Type 316 Stainless Steel. Steel Research International, 85, 1099-1108.
http://dx.doi.org/10.1002/srin.201300173
[154] Akira, Y., Mamoru, I., Hisanao, K. and Jun, Y. (2012) Multistage and High-speed Compression Testing Machine for Obtaining Flow Stress and Microstructure Evolution in Hot Forming of Steels. Iron and Steel Institute of Japan (ISIJ) International, 52, 574-581. http://dx.doi.org/10.2355/isijinternational.52.574
[155] Toshiro, T., Norio, I. Kaori, M., Suguhiro, F., Mitsuru, Y., Masayuki, W., Manabu, E., Tamotsu, S., Youichi, H. and Yasutaka, O. (2008) Grain Refinement of C-Mn Steel to 1 μm by Rapid Cooling and Short Interval Multi-Pass Hot Rolling in Stable Austenite Region. Iron and Steel Institute of Japan (ISIJ) International, 48, 1148-1157.
[156] Manabu, E., Suguhiro, F., Tamotsu, S., Youichi, H., Kaori, M., Masayuki, W., Toshiro, T., Norio, I., Mitsuru, Y. and Yasutaka, O. (2008) Super Short Interval Multi-Pass Rolling Process for Ultrafine-Grained Hot Strip. Iron and Steel Institute of Japan (ISIJ) International, 48, 1142-1147.
[157] Valiev, R., Sergueeva, A. and Mukherjee, A. (2003) The Effect of Annealing on Tensile Deformation Behavior of Nanostructure SPD Titanium. Scripta Materialia, 49, 669-674.
http://dx.doi.org/10.1016/S1359-6462(03)00395-6
[158] Alexandrov, I. and Valiev, R. (2001) Developing of SPD Processing and Enhanced Properties in Bulk Nanostructured Metals. Scripta Materialia, 44, 1605-1608. http://dx.doi.org/10.1016/S1359-6462(01)00783-7
[159] Stolyarov, V., Zhu, Y., Lowe, T., Islamgaliev, R. and Valiev, R. (1999) A Two Step SPD Processing of Ultrafine-Grained Titanium. Nanostructred Materials, 11, 947-954. http://dx.doi.org/10.1016/S0965-9773(99)00384-0
[160] Valiev, R., Krasilnikov, N. and Tsenev, N. (1991) Plastic Deformation of Alloys with Submicro-Grained Structure. Materials Science and Engineering A, 137, 35-40. http://dx.doi.org/10.1016/0921-5093(91)90316-F
[161] Segal, V., Dobatkin, S. and Valiev, R. (editors) (2004) Equal-Channel Angular Pressing of Metallic Materials: Achievements and Trends. Thematic Issue, Part 1, Russian Metall, 1, 1-102. (translated from Metally 2004, no. 1, pp. 3-119).
[162] Brandon, D.G. (1966) The Structure of High-Angle Grain Boundaries Structure de Joints de Grains a Grands Angles. Acta Metallurgica, 14, 1479-1484. http://dx.doi.org/10.1016/0001-6160(66)90168-4
[163] Zhilyaev, A. and Langdon, T. (2008) Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications. Progress in Materials Science, 53, 893-979.
http://dx.doi.org/10.1016/j.pmatsci.2008.03.002
[164] Mishra, R.S. Valiev, R.Z. and A.K. Mukherjee, A.K. (1997) The Observation of Tensile Superplasticity in Nanocrystalline Materials. Nanostructured Materials, 9, 473-476. http://dx.doi.org/10.1016/S0965-9773(97)00103-7
[165] Zhilyaev, A., Nurislamova, G., Kim, B., Baro, M., Szpunar, J. and Langdon, T. (2003) Experimental Parameters Influencing Grain Refinement and Microstructural Evolution During High-Pressure Torsion. Acta Materialia, 51, 753-765. http://dx.doi.org/10.1016/S1359-6454(02)00466-4
[166] Salishchev, G., Valiahmetov, O. and Galeev, R. (1993) Formation of Submicrocrystalline Structure in Titanium Alloy VT8 and Its Influence on Mechanical Properties. Journal of Materials Science, 28, 2898-2902. http://dx.doi.org/10.1007/BF00354692
[167] Sevillano, J., Houtte, P. and Aernoudt, E. (1980) Large Strain Work Hardening and Textures. Progress in Materials Science, 25, 69134. http://dx.doi.org/10.1016/0079-6425(80)90001-8
[168] Sitdikov, O., Sakai, T., Goloborodko, A., Miura, H. and Kaibyshev, R. (2004) Effect of Pass Strain on Grain Refinement in 7475 Al Alloy during Hot Multidirectional Forging. Materials Transactions, 45, 2232-2238. http://dx.doi.org/10.2320/matertrans.45.2232
[169] Beygelzimer, Y., Varyukhin, V., Orlov, D., Synkov, S., Spuskanyuk, A. and Pashinska,Y. (2004) Severe Plastic Deformation by Twist Extrusion. In: Zehetbauer, M.J. and Valiev, R.Z., Eds., Nanomaterials by Severe Plastic Deformation. Wiley-VCH Verlag, Weinheim, 511-516.
[170] Varyutkhin, V., Beygelzimer, Y., Synkov, S. and Orlov. D. (2006) Application of Twist Extrusion. Materials Science Forum, 503-504, 335-340.
[171] Bay, B., Hansen, N., Hughes, D.A. and Kuhlmann-Wilsdorf, D. (192) Overview No. 96 Evolution of f.c.c. Deformation Structures in Polyslip. Acta Metallurgica et Materialia, 40, 205-219.
http://dx.doi.org/10.1016/0956-7151(92)90296-Q
[172] Richert, M., Liu, Q. and Hansen, N. (1999) Microstructural Evolution over a Large Strain Range in Aluminum Deformed by Cyclic-Extrusion Compression. Materials Science and Engineering A, 260, 275-283. http://dx.doi.org/10.1016/S0921-5093(98)00988-5
[173] Chu, H., Liu, K. and Yeh, J. (2000) Study of 6061-Al2O3p Composites Produced by Reciprocating Extrusion. Metallurgical and Materials Transactions A, 31, 2587-2596. http://dx.doi.org/10.1007/s11661-000-0203-2
[174] Chu, H., Liu, K. and Yeh, J. (2001) Aging Behavior and Tensile Properties of 6061Al-0.3 μm Al2O3p Particle Composites Produced by Reciprocating Extrusion, Scripta Materialia, 45, 541-546.
http://dx.doi.org/10.1016/S1359-6462(01)01055-7
[175] Huang, I., Zhu, Y., Jiang, H. and Lowe, T. (2001) Microstructures and Dislocation Configurations in Nanostructured Cu Processed by Repetitive Corrugation and Straightening, Acta Materialia, 49, 1497-1505. http://dx.doi.org/10.1016/S1359-6454(01)00069-6
[176] Zhu, Y., Jiang, H., Huang, J. and Lowe, T. (2001) A New Route to Bulk Nanostructured Metals. Metallurgical and Materials Transactions A, 32, 1559-1562. http://dx.doi.org/10.1007/s11661-001-0245-0
[177] Shin, D., Park, J., Kim, Y. and Park, K. (2002) Constrained Groove Pressing and Its Application to Grain Refinement of Aluminum. Materials Science and Engineering A, 328, 98-103.
http://dx.doi.org/10.1016/S0921-5093(01)01665-3
[178] Zhao, X., Jing, T.F., Gao, Y.W., Zhou, J.F. and Wang, W. (2004) A New SPD Process for Spheroidal Cast Iron. Materials Letters, 58, 2335-2339. http://dx.doi.org/10.1016/j.matlet.2004.01.034
[179] Saito, Y., Tsuji, N., Utsunomiya, H., Sakai, T. and Hong, R.G. (1998) Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process. Scripta Materialia, 39, 1221-1227.
http://dx.doi.org/10.1016/S1359-6462(98)00302-9
[180] Saito, Y., Utsunomiya, H., Tsuji, N. and Sakai, T. (1999) Novel Ultra-High Straining Process for Bulk Materials— Development of the Accumulative Roll-bonding (ARB) Process. Acta Materialia, 47, 579-583. http://dx.doi.org/10.1016/S1359-6454(98)00365-6
[181] Rhodes, C., Mahoney, M., Bingel, W., Spurling, R. and Bampton, C. (1997) Effects of Friction Stir Welding on Microstructure of 7075 Aluminum. Scripta Materialia, 36, 69-75. http://dx.doi.org/10.1016/S1359-6462(96)00344-2
[182] Mishra, R., Ma, Z. and Charit, I. (2003) Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite. Materials Science and Engineering A, 341, 307-310.
http://dx.doi.org/10.1016/S0921-5093(02)00199-5
[183] Hofmann, D. and Vecchio, K. (2005) Submerged Friction Stir Processing (SFSP): An Improved Method for Creating Ultra-fine-grained Bulk Materials. Materials Science and Engineering A, 402, 234-241. http://dx.doi.org/10.1016/j.msea.2005.04.032
[184] Hofmann, D. and Vecchio, K. (2007) Thermal History Analysis of Friction Stir Processed and Submerged Friction Stir Processed Aluminum, Materials Science and Engineering A, 465, 165-175. http://dx.doi.org/10.1016/j.msea.2007.02.056
[185] Valiev, R., Krasilnikov, N. and Tsenev, N. (1991) Plastic Deformation of Alloys with Submicron-Grained Structure. Materials Science and Engineering A, 137, 35-40. http://dx.doi.org/10.1016/0921-5093(91)90316-F
[186] Fukuda, Y., Oh-Ishi, K., Horita, Z. and Langdon, T.G. (2002) Processing of a Low-Carbon Steel by Equal-channel Angular Pressing. Acta Materialia, 50, 1359-1368. http://dx.doi.org/10.1016/S1359-6454(01)00441-4
[187] Shin, D., Kim, B., Kim, Y. and Park, K. (2000) Microstructural Evolution in a Commercial Low Carbon Steel by Equal Channel Angular Pressing. Acta Materialia, 48, 2247-2256. http://dx.doi.org/10.1016/S1359-6454(00)00028-8
[188] Tóth, L. (2005) Modelling of Strain Hardening and Microstructural Evolution in Equal Channel Angular Extrusion. Computational Materials Science, 32, 568-576.
http://dx.doi.org/10.1016/j.commatsci.2004.09.007
[189] Hansen, N. and Barlow, C.Y. (2014) 17—Plastic Deformation of Metals and Alloys. Physical Metallurgy (Fifth Edition), II, 1681-1764.
http://dx.doi.org/10.1016/B978-0-444-53770-6.00017-4
[190] Segal, V. (1995) Equal Channel Angular Extrusion: From Macromechanics to Structure Formation. Materials Science and Engineering A, 271, 322-333. http://dx.doi.org/10.1016/S0921-5093(99)00248-8
[191] Tóth, I., Massion, R., Germain, L., Baik, S. and Suwas, S. (2003) Analysis of Texture Evolution in Equal Channel Angular Extrusion of Copper Using a New Flow Field. Acta Materialia, 52, 1885-1898. http://dx.doi.org/10.1016/j.actamat.2003.12.027
[192] Beyerlein, I. and Tome, C. (2004) Analytical Modeling of Material Flow in Equal Channel Angular Extrusion (ECAE). Materials Science and Engineering A, 380, 171-190.
http://dx.doi.org/10.1016/j.msea.2004.03.063
[193] Valiev, R., Islamgaliev, R. and Alexandrov, I. (2000) Bulk Nanostructured Materials from Severe Plastic Deformation. Progress in Materials Science, 45, 103-189. http://dx.doi.org/10.1016/S0079-6425(99)00007-9
[194] Zhu, Y. and Langdon, T. (2004) Fundamentals of Nanostructured Materials by Severe Plastic Deformation. The Journal of the Minerals, Metals & Materials Society (TMS), 56, 58-63.
http://dx.doi.org/10.1007/s11837-004-0294-0
[195] Raab, G., Valiev, R., Lowe, T. and Zhu, Y. (2004) Continuous Processing of Ultrafine Grained Al by ECAP-Conform. Materials Science and Engineering A, 382, 30-34.
http://dx.doi.org/10.1016/j.msea.2004.04.021
[196] Tsuji, N., Saito, Y., Lee, S. and Minamino, Y. (2003) ARB (Accumulative Roll-Bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials. Advanced Engineering Materials, 5, 338-344. http://dx.doi.org/10.1002/adem.200310077
[197] Saito, Y., Utsunomiya, H., Tsuji, N. and Sakai, T. (1999) Novel Ultra-High Straining Process for Bulk Materials— Development of the Accumulative Roll-bonding (ARB) Process. Acta Materialia, 47, 579-583. http://dx.doi.org/10.1016/S1359-6454(98)00365-6
[198] Tsuji, I., Ito, Y., Saito, Y. and Minamino, Y. (2002) Strength and Ductility of Ultrafine Grained Aluminum and Iron Produced by ARB and Annealing, Scripta Materialia, 47, 893-899. http://dx.doi.org/10.1016/S1359-6462(02)00282-8
[199] Costa, A., Reis, L., Kestens, M. and Andrade, A. (2005) Ultra Grain Refinement and Hardening of IF-Steel during Accumulative Roll-bonding. Materials Science and Engineering A, 406, 279-285. http://dx.doi.org/10.1016/j.msea.2005.06.058
[200] Cao, Y., Wang, Y., Liao, X. Kawasaki, M., Ringer, S., Langdon, T.G. and Zhu. Y.T. (2014) Concurrent Microstructural Evolution of Ferrite and Austenite in a Duplex Stainless Steel Processed by High-Pressure Torsion. Acta Materialia, 63, 16-29. http://dx.doi.org/10.1016/j.actamat.2013.09.030
[201] Valiev, R., Korznikov, A. and Mulyukov, R. (1993) Structure and Properties of Ultrafine-Grained Materials Produced by Severe Plastic Deformation, Materials Science and Engineering A, 186, 141-148. http://dx.doi.org/10.1016/0921-5093(93)90717-S
[202] Nakao, Y. and Miura, H. (2011) Nano-Grain Evolution in Austenitic Stainless Steel during Multi-Directional Forging. Materials Science and Engineering A, 528, 1310-1317.
http://dx.doi.org/10.1016/j.msea.2010.10.018
[203] Huang, J. and Xu, Z. (2006) Evolution Mechanism of Grain Refinement Based on Dynamic Recrystallization in Multiaxially Forged Austenite. Materials Letters, 60, 1854-1858.
http://dx.doi.org/10.1016/j.matlet.2005.12.110
[204] Tsuji, N., Kitahara, H., Ueji, R. and Ueda, M. (2005) Crystallographic Analysis of Martensite in Steels by Means of EBSD. Proceedings of International Conference on Martensitic Transformations (ICOMAT 05), 14-17 June 2005, Shanghai. KEYNOTE lecture in the session E.
[205] Guthrie, R. and Jonas, J. (1993) ASM Handbook. 10th Edition, Vol. 1, American Society for Metals, Metals Park, 288-292.
[206] Tsuji, I., Ueji, R., Minamino, Y. and Saito, Y. (2002) A New and Simple Process to Obtain Nano-structured Bulk Low-Carbon Steel with Superior Mechanical Property. Scrpita Materiala, 46, 305-310.
http://dx.doi.org/10.1016/S1359-6462(01)01243-X
[207] Soleymani, V. and Eghbali, B. (2012) Grain Refinement in a Low Carbon Steel through Multidirectional Forging. Journal of Iron and Steel Research International, 19, 74-78. http://dx.doi.org/10.1016/S1006-706X(12)60155-1
[208] Shiro, T., Akio, O., Narayana, M., Murty, S.V.S. and Kotobu, N. (2006) Effect of Strain on the Microstructure and Mechanical Properties of Multi-Pass Warm Caliber Rolled Low Carbon Steel. Scripta Materialia, 54, 563-568. http://dx.doi.org/10.1016/j.scriptamat.2005.10.055
[209] Valiev, R. and Langdon, T. (2006) Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement. Progress in Materials Science, 51, 881-981.
http://dx.doi.org/10.1016/j.pmatsci.2006.02.003
[210] Ji, Y. and Park, J. (2009) Development of Severe Plastic Deformation by Various Asymmetric Rolling Processes. Materials Science and Engineering A, 499, 14-17.
http://dx.doi.org/10.1016/j.msea.2007.11.099
[211] Alihosseini, H., Asle Zaeem, M. and Dehghani, K. (2012) A Cyclic Forward-Backward Extrusion Process as a Novel Severe Plastic Deformation for Production of Ultrafine Grains Materials. Materials Letters, 68, 204-208. http://dx.doi.org/10.1016/j.matlet.2011.10.037
[212] Saito, Y., Tsuji, N., Utsunomiya, H., Sakai, T. and Hong, R.G. (1998) Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-bonding (ARB) Process. Scripta Materialia, 39, 1221-1227.
http://dx.doi.org/10.1016/S1359-6462(98)00302-9
[213] Shin, D., Park, J., Kim, Y. and Park, K. (2002) Constrained Groove Pressing and Its Application to Grain Refinement of Aluminum. Materials Science and Engineering A, 328, 98-103.
http://dx.doi.org/10.1016/S0921-5093(01)01665-3
[214] Tsuji, I., Saito, Y., Utsunomiya, H. and Tanigawa, S. (1999) Ultra-Fine Grained Bulk Steel Produced by Accumulative Roll-Bonding (ARB) Process. Scripta Materialia, 40, 795-800.
http://dx.doi.org/10.1016/S1359-6462(99)00015-9
[215] Krishnaiah, I., Chakkingal, U. and Venugopal, P. (2005) Production of Ultrafine Grain Sizes in Aluminium Sheets by Severe Plastic Deformation Using the Technique of Groove Pressing. Scripta Materialia, 52, 1229-1233. http://dx.doi.org/10.1016/j.scriptamat.2005.03.001
[216] Khodabakhshi, F., Kazeminezhad, M. and Kokabi, A.H. (2010) Constrained Groove Pressing of Low Carbon Steel: Nano-Structure and Mechanical Properties. Materials Science and Engineering A, 527, 4043-4049. http://dx.doi.org/10.1016/j.msea.2010.03.005
[217] Alihosseini, H. and Dehghani, K. (2012) Bake Hardening of Ultra-Fine Grained Low Carbon Steel Produced by Constrained Groove Pressing. Materials Science and Engineering A, 549, 157-162.
http://dx.doi.org/10.1016/j.msea.2012.04.024
[218] Khodabakhshi, F., Kazeminezhad, M. and Kokabi, A.H. (2012) Resistance Spot Welding of Ultra-Fine Grained Steel Sheets Produced by Constrained Groove Pressing: Optimization and Characterization. Material Characterization, 69, 71-83. http://dx.doi.org/10.1016/j.matchar.2012.04.011
[219] Shiro, T., Matthias, K., Yoshiyuki, F. and Manfred, B. (2012) Effect of Tensile Strength and Microstructure on Notch-Fatigue Properties of Ultrafine-Grained Steels. Iron and Steel Institute of Japan (ISIJ) International, 52, 910-914. http://dx.doi.org/10.2355/isijinternational.52.910
[220] Ohmori, I., Torizuka, S., Nagai, K., Koseki N. and Kogo, Y. (2003) Transformations and Microstructures -Evolution of Ultrafine-Grained Ferrite Structure through Multi-Pass Warm Caliber-Rolling. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 89, 781-788.
[221] Murty, S. and Torizuka, S. (2008) Microstructure-Mechanical Properties Correlation in Ultrafine Grained Steels Processed by Large Strain Warm Deformation. Iron and Steel Institute of Japan (ISIJ) International, 48, 1088-1095. http://dx.doi.org/10.2355/isijinternational.48.1088
[222] Torizuka, S., Muramatsu, E., Murty, S. and Nagai, K. (2006) Microstructure Evolution and Strength-Reduction in Area Balance of Ultrafine-Grained Steels Processed by Warm Caliber Rolling. Scrpita Materiala, 55, 751-754. http://dx.doi.org/10.1016/j.scriptamat.2006.03.067
[223] Kimura, Y., Inoue, T., Yin, F. and Tsuzaki, K. (2008) Inverse Temperature Dependence of Toughness in an Ultrafine Grain-Structure Steel. Science, 320, 1057-1060.
[224] Kimura, Y., Inoue, T., Yin, F. and Tsuzaki, K. (2010) Delamination Toughening of Ultrafine Grain Structure Steels Processed through Tempforming at Elevated Temperatures. Iron and Steel Institute of Japan (ISIJ) International, 50, 152-161. http://dx.doi.org/10.2355/isijinternational.50.152
[225] Kimura, Y., Inoue, T. and Tsuzaki, K. (2013) Tempforming in Medium-Carbon Low-Alloy Steel. Journal of Alloys and Compounds, 577, S538-S542. http://dx.doi.org/10.1016/j.jallcom.2011.12.123
[226] Wu, Z., Ding, H., Li, H., Huang, M. and Cao, F. (2013) Microstructural Evolution and Strain Hardening Behavior during Plastic Deformation of Fe-12Mn-8Al-0.8C Steel. Materials Science and Engineering A, 584, 150-155. http://dx.doi.org/10.1016/j.msea.2013.07.023
[227] Kang, S., Na, Y., Park, K., Jeon, J., Son, S. and Lee, J. (2007) A Study on the Micro-Formability of Al 5083 Superplastic Alloy Using Micro-Forging Method. Materials Science and Engineering A, 449-451, 338-342. http://dx.doi.org/10.1016/j.msea.2006.01.166
[228] Langdon. T. (2013) Twenty-Five Years of Ultrafine-Grained Materials: Achieving Exceptional Properties through Grain Refinement, Acta Materialia, 61, 7035-7059.
http://dx.doi.org/10.1016/j.actamat.2013.08.018
[229] Lesuer, D., Syn, C. and Sherby, O. (1996) Ultrahigh Carbon Steel for Automotive Applications. 1996 SAE International Congress & Exposition, Detroit, 26-29 February 1996, 26-29.
[230] Elices, M. (2004) Influence of Residual Stresses in the Performance of Cold Drawing Pearlitic Wires. Journal of Materials Science, 39, 3889-3899. http://dx.doi.org/10.1023/B:JMSC.0000031470.31354.b5
[231] Zhao, M., Yang, K. and Shan, Y. (2002) The Effects of Thermo-Mechanical Control Process on Microstructures and Mechanical Properties of a Commercial Pipeline Steel. Materials Science and Engineering A, 335, 14-20. http://dx.doi.org/10.1016/S0921-5093(01)01904-9
[232] Bott, I., Teixeira, L. and Rios, R. (2005) High-Strength Steel Development for Pipelines. Metallurgical and Materials Transactions A, 36, 443-454.http://dx.doi.org/10.1007/s11661-005-0315-9
[233] Hillenbrand, I., Graf, I. and Kalwa, I. (2001) Development and Production of High Strength Pipeline Steels. Proceedings of the Conference Niobium, Orlando, 2-5, December 2001.
[234] Takahashi, I. and Iino, M. (1996) Thermomechanical Control Process as a Tool to Grain Refine the Low Manganese-containing Steel for Sour Service Line Pipe. Iron and Steel Institute of Japan (ISIJ) International, 36, 235-240. http://dx.doi.org/10.2355/isijinternational.36.235
[235] Takahashi, A. and Iino, M. (1996) Microstructure Refinement by Cu Addition and Its Effect on Strengthening and Toughening of Sour Service Line Pipe. Iron and Steel Institute of Japan (ISIJ) International, 36, 241-245. http://dx.doi.org/10.2355/isijinternational.36.241
[236] Contreras, A., Albiter, A., Salazar, M. and Perez, R. (2005) Slow Strain Rate Corrosion and Fracture Characteristics of X-52 and X-70 Pipeline Steels. Materials Science and Engineering A, 407, 45-52. http://dx.doi.org/10.1016/j.msea.2005.07.028
[237] Kim, Y., Kim, S., Lim, Y. and Kim, N. (2002) Effect of Microstructure on the Yield Ratio and Low Temperature Toughness of Line-Pipe Steels. Iron and Steel Institute of Japan (ISIJ) International, 42, 1571-1577. http://dx.doi.org/10.2355/isijinternational.42.1571
[238] Zhong, Y., Xiao,F., Zhang, J., Shan, Y., Wang, W. and Yang, K. (2006) In Situ TEM Study of the Effect of M/A Films at Grain Boundaries on Crack Propagation in an Ultra-fine Acicular Ferrite Pipeline Steel. Acta Materialia, 54, 435-443. http://dx.doi.org/10.1016/j.actamat.2005.09.015
[239] Skripnyuk, V., Rabkin, E., Estrin, Y. and Lapovok, R. (2004) The Effect of Ball Milling and Equal Channel Angular Pressing on the Hydrogen Absorption/Desorption Properties of Mg-4.95 wt% Zn-0.71 wt% Zr (ZK60) Alloy. Acta Materialia, 52, 405-414. http://dx.doi.org/10.1016/j.actamat.2003.09.025
[240] Latysh, V., Krallics, G.Y., Alexandrov, I. and Fodor. A. (2006) Application of Bulk Nanostructured Materials in Medicine. Current Applied Physics, 6, 262-266.http://dx.doi.org/10.1016/j.cap.2005.07.053
[241] Eissa, M. (1988) The Effect of Microalloying Additions and Hot Rolling Condition on the Mechanical Properties of High Strength Low Alloy Steels. Ph.D. Thesis, Faculty of Engineering, Cairo University, Egypt.
[242] Baraka, I., El-Fawakhry, K., Mishreky, M.L., Eissa, M. and Lamei, M.M. (1989) Effect of Titanium as Microalloying Element on the Mechanical Properties of High Strength Low Alloy Steel. 2nd International Conference on Mining and Metallurgical Engineering, Suez Canal University, 20-22 March 1989, 580-588.
[243] El-Fawakhry, K., Mishreky, M.L. and Eissa, M. (1990) Secondary Hardening of Vanadium and Titanium Microalloyed Steels. Scandinavian Journal of Metallurgy, 19, 33-38.
[244] Mekkawy, M.F., El-Fawakhry, K., Mishreky, M.L. and Eissa, M. (1990) Effect of Rolling Schedule on Mechanical Properties and Structure of V- and Ti-Microalloyed Steels. Scandinavian Journal of Metallurgy, 19, 82-84.
[245] Mekkawy, M.F., El-Fawakhry, K., Mishreky, M.L. and Eissa, M. (1990) Effect of Reheating Temperature on Microstructure and Strength of V- and Ti-microalloyed Steels. Scandinavian Journal of Metallurgy, 19, 236-245.
[246] Mekkawy, M.F., El-Fawakhry, K., Mishreky, M.L. and Eissa, M. (1990) Effect of Finish-rolling Temperature on Microstructure and Strength of V- and Ti-Microalloyed Steels. Scandinavian Journal of Metallurgy, 19, 246-256.
[247] Mekkawy, M.F., El-Fawakhry, K., Mishreky, M.L. and Eissa, M. (1990) Direct Quenching of Low Manganese Steels Microalloyed with Vanadium or Titanium. Transactions of the Iron and Steel Society (ISS), Iron and Steelmaker, October (1990), 75-83.
[248] Mekkawy, M.F., El-Fawakhry, K., Mishreky, M.L. and Eissa, M. (1990) Effect of Interrupted Accelerated Cooling on Mechanical Properties and Structure of V- and Ti-Microalloyed Steel Bars. Materials Science and Technology, 7, 28- 36. http://dx.doi.org/10.1179/mst.1991.7.1.28
[249] Eissa, M., El-Fawakhry, K., Mishreky, M.L. and Abd ElKarim, O. (1993) Production of Titanium Microalloyed Reinforcing Steel Bars in Open Hearth Furnaces. AMSE Transactions, 34, 1-15.
[250] Lamei, M.M. (1993) The Effect of Microalloying Elements on the Mechanical Properties of Low Carbon-Manganese Steel. Ph.D. Thesis, Faculty of Science, Cairo University, Egypt.
[251] Tawfik, I. (1993) Effect of Vanadium and Nitrogen on Mechanical Properties of Low Carbon Steels. M.Sc. Thesis, Faculty of Engineering, Cairo University, Egypt.
[252] Fathi, A. (1994) Microalloyed High Carbon Steel. M.Sc. Thesis, Faculty of Science, Helwan University, Egypt.
[253] Eissa, M., El-Fawakhry, K., El-Faramawy, H. and Fathy, A. (1996) Production of Ultra High Strength Wire Rod Steels by Vanadium Microalloying. Steel Research, 67, 100-105.
[254] Eissa, M., El-Fawakhry, K., El-Faramawy, H. and Fathy, A. (1996) Vanadium-Microalloyed High Carbon Steel. Transactions of Iron and Steel Society (ISS), Iron and Steelmaker, 23, 73-81
[255] Eissa, M., El-Fawakhry, K., Ahmed, M., El-Zommor, M. and Lamei, M.M. (1997) Development of Superior High Strength Low Impact Transition Temperature Steels Microalloyed with Vanadium and Nitrogen. Journal of Materials Science and Technology, 5, 3-19.
[256] Eissa, M., El-Fawakhry, K., Mishreky, M.L. Hussein, A.H. and Tawfik, A. (1998) Low Carbon Manganese Steels Microalloyed with Vanadium and Nitrogen. Steel Research, 69, 334-342.
[257] El-Fawakhry, K., Eissa, M. and Mishreky, M.L. (1998) Production of High Strength Steel for Prestressed Concrete Using Microalloying Technology. AISU 2nd International Symposium on “Electric Furnace”, Damascus, 18-20 Octorber 1998.
[258] Eissa, M. (1998) Influence of Base Composition on the Strength of Vanadium-Microalloyed Steel Bars. Steel Research, 69, 438-445.
[259] Eissa, M. and Mattar, T. (2002) Mechanical Properties Relationships in V- and Ti-Microalloyed Steels. Steel Research, 73, 403-408.
[260] Eissa, M., Abd El-Aziz, A., Ghaly, S., Halfa, H. and Saber, S. (2011) Effect of Microalloying Additions on the Microstructure and Mechanical Properties of Low Carbon Steel. Journal of Iron and Steel Research International, 18, 246- 251.
[261] Eissa, M., Mekkawy, F., El-Fawakhry, K. and Mishreky, M.L. (1991) Characterization of Precipitates in Vanadium and Titanium Microalloyed Steels. Iron and Steel Institute of Japan (ISIJ) International, 31, 1020-1025. http://dx.doi.org/10.2355/isijinternational.31.1020

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.