Share This Article:

Electromagnetophoresis of a Colloidal Sphere in a Spherical Cavity

Abstract Full-Text HTML XML Download Download as PDF (Size:547KB) PP. 269-279
DOI: 10.4236/jemaa.2014.610027    3,261 Downloads   3,899 Views   Citations

ABSTRACT

The quasi-steady electromagnetophoretic motion of a spherical colloidal particle positioned at the center of a spherical cavity filled with a conducting fluid is analyzed at low Reynolds number. Under uniformly applied electric and magnetic fields, the electric current and magnetic flux density distributions are solved for the particle and fluid phases of arbitrary electric conductivities and magnetic permeabilities. Applying a generalized reciprocal theorem to the Stokes equations modified with the resulted Lorentz force density and considering the contribution of the magnetic Maxwell stress to the force exerted on the particle, which turns out to be important, we obtain a closed-form formula for the migration velocity of the particle valid for an arbitrary value of the particle-to-cavity radius ratio. The particle velocity in general decreases monotonically with an increase in this radius ratio, with an exception for the case of a particle with high electric conductivity and low magnetic permeability relative to the suspending fluid. The asymptotic behaviors of the boundary effect on the electromagnetophoretic force and mobility of the confined particle at small and large radius ratios are discussed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Hsieh, T. and Keh, H. (2014) Electromagnetophoresis of a Colloidal Sphere in a Spherical Cavity. Journal of Electromagnetic Analysis and Applications, 6, 269-279. doi: 10.4236/jemaa.2014.610027.

References

[1] Jackson, J.D. (1975) Classical Electrodynamics. 2nd Edition, Wiley, New York.
[2] Grant, K.M., Hemmert, J.W. and White, H.S. (2002)Magnetic Field-Controlled Microfluidic Transport. Journal of American Chemical Society,124, 462-467.
http://dx.doi.org/10.1021/ja016544y
[3] Qin, M. and Bau, H.H. (2012) Magnetohydrodynamic Flow of a Binary Electrolyte in a Concentric Annulus. Physics of Fluids, 24, 037101-1-20.
http://dx.doi.org/10.1063/1.3689187
[4] Kolin, A. and Kado, R.T. (1958) Fractionation of Cell Suspensions in an Electromagnetic Force Field. Nature, 182, 510-512.
http://dx.doi.org/10.1038/182510a0
[5] Mills, R.A. (1968) A Microscopic Formulation of Electromagnetophoresis. Bulletin of Mathematical Biophysics, 30, 309-318.
http://dx.doi.org/10.1007/BF02476698
[6] Iiguni, Y., Suwa, M. and Watarai, H. (2004) High-Magnetic-Field Electromagnetophoresis of Micro-Particles in a Capillary Flow System. Journal of Chromatography A, 1032, 165-171.
http://dx.doi.org/10.1016/j.chroma.2003.10.134
[7] Watarai, H., Suwa, M. and Iiguni, Y. (2004) Magnetophoresis and Electromagnetophoresis of Microparticles in Liquids. Analytical and Bioanalytical Chemistry, 378, 1693-1699.
http://dx.doi.org/10.1007/s00216-003-2354-7
[8] Ozawa, S., Kurosaka, D., Yamamoto, I. and Takamasu, T. (2011) DNA Electromagnetophoresis under the Condition of Magnetic Fields Perpendicular to Electric Fields. Japanese Journal of Applied Physics, 50, 070212-1-3.
http://dx.doi.org/10.7567/JJAP.50.070212
[9] Tombacz, E., Ma, C., Busch, K.W. and Busch, M.A. (1991) Effect of a Weak Magnetic Field on Hematite Sol in Stationary and Flowing Systems. Colloid and Polymer Science, 269, 278-289.
http://dx.doi.org/10.1007/BF00665502
[10] Busch, K.W., Gopalakrishnan, S., Busch, M.A. and Tombacz, E. (1996) Magnetohydrodynamic Aggregation of Cholesterol and Polystyrene Latex Suspensions. Journal of Colloid and Interface Science, 183, 528-538.
http://dx.doi.org/10.1006/jcis.1996.0576
[11] Stuyven, B., Chen, Q., Van de Moortel, W., Lipkens, H., Caerts, B., Aerts, A., Giebeler, L., Van Eerdenbrugh, B., Augustijns, P., Van den Mooter, G., Van Humbeeck, J., Vanacken, J., Moshchalkov, V.V., Vermant, J. and Martens, J.A. (2009) Magnetic Field Assisted Nanoparticle Dispersion. Chemical Communications, 45, 47-49.
http://dx.doi.org/10.1039/b816171b
[12] Xu, Z., Li, T. and Zhou, Y. (2007) Continuous Removal of Nonmetallic Inclusions from Aluminum Melts by Means of Stationary Electromagnetic Field and DC Current. Metallurgical and Materials Transactions A, 38, 1104-1110.
[13] Haverkort, J.W. and Peeters, T.W.J. (2010) Magnetohydrodynamic Effects on Insulating Bubbles and Inclusions in the Continuous Casting of Steel. Metallurgical and Materials Transactions B, 41, 1240-1246.
[14] Iiguni, Y. and Watarai, H. (2003) Simultaneous Measurement of the Migration Velocity and Adsorption Force of Micro-Particles Using an Electromagnetophoretic Force under a High Magnetic Field. Analytical Sciences, 19, 33-37.
http://dx.doi.org/10.2116/analsci.19.33
[15] Iiguni, Y. and Watarai, H. (2010) Dynamic Electromagnetophoretic Force Analysis of a Single Binding Interaction between Lectin and Mannan Polysaccharide on Yeast Cell Surface. Analyst, 135, 1426-1432.
http://dx.doi.org/10.1039/b924339a
[16] Nozaki, O., Munese, M. and Kawamoto, H. (2004) Determination of Glycation on Diabetic Erythrocytes by Electromagnetophoresis. Bunseki Kagaku, 53, 85-90.
http://dx.doi.org/10.2116/bunsekikagaku.53.85
[17] Chung, J. and Liang, R.C. (2009) Electro-Magnetophoresis Display. US Patent No. 7576904.
[18] Yang, Y., Grant, K.M., White, H.S. and Chen, S. (2003) Magnetoelectrochemistry of Nitrothiophenolate-Functionalized Gold Nanoparticles. Langmuir, 19, 9446-9449.
http://dx.doi.org/10.1021/la0345688
[19] Burdick, J., Laocharoensuk, R., Wheat, P.M., Posner, J.D. and Wang, J. (2008) Synthetic Nanomotors in Microchannel Networks: Directional Microchip Motion and Controlled Manipulation of Cargo. Journal of American Chemical Society, 130, 8164-8165.
http://dx.doi.org/10.1021/ja803529u
[20] Chaturvedi, N., Hong, Y., Sen, A. and Velegol, D. (2010) Magnetic Enhancement of Phototaxing Catalytic Motors. Langmuir, 26, 6308-6313.
http://dx.doi.org/10.1021/la904133a
[21] Hsieh, T.H. and Keh, H.J. (2010) Magnetohydrodynamic Effects on a Charged Colloidal Sphere with Arbitrary Double-Layer Thickness. Journal of Chemical Physics, 133, Article ID: 134103.
http://dx.doi.org/10.1063/1.3489684
[22] Hsieh, T.H. and Keh, H.J. (2012) Motion of a Colloidal Sphere with Interfacial Self-Electrochemical Reactions Induced by a Magnetic Field. Journal of Chemical Physics, 136, Article ID: 174702.
http://dx.doi.org/10.1063/1.4706516
[23] Kolin, A. (1953) An Electromagnetokinetic Phenomenon Involving Migration of Neutral Particles. Science, 117, 134-137.
http://dx.doi.org/10.1126/science.117.3032.134
[24] Leenov, D. and Kolin, A. (1954) Theory of Electromagnetophoresis. I. Magnetohydrodynamic Forces Experienced by Spherical and Symmetrically Oriented Cylindrical Partic1es. Journal of Chemical Physics, 22, 683-688.
http://dx.doi.org/10.1063/1.1740149
[25] Hsieh, T.H. and Keh, H.J. (2011) Electrokinetic Motion of a Charged Colloidal Sphere in a Spherical Cavity with Magnetic Fields. Journal of Chemical Physics, 134, Article ID: 044125.
http://dx.doi.org/10.1063/1.3537975
[26] Sellier, A. (2006) Migration of a Solid Conducting Sphere Immersed in a Liquid Metal Near a Plane Conducting Solid Wall under the Action of Uniform Ambient Electric and Magnetic Fields. Magnetohydrodynamics, 42, 317-326.
[27] Yariv, E. and Miloh, T. (2009) Boundary Effects on Electro-Magneto-Phoresis. Journal of Fluid Mechanics, 622, 195-207.
http://dx.doi.org/10.1017/S0022112008005193
[28] Zydney, A.L. (1995) Boundary Effects on the Electrophoretic Motion of a Charged Particle in a Spherical Cavity. Journal of Colloid and Interface Science, 169, 476-485.
http://dx.doi.org/10.1006/jcis.1995.1058
[29] Keh, H.J. and Chiou, J.Y. (1996) Electrophoresis of a Colloidal Sphere in a Circular Cylindrical Pore. AIChE Journal, 42, 1397-1406.
http://dx.doi.org/10.1002/aic.690420520
[30] Happel, J. and Brenner, H. (1983) Low Reynolds Number Hydrodynamics. Martinus Nijhoff, Dordrecht.
[31] Keh, H.J. and Hsieh, T.H. (2007) Electrophoresis of a Colloidal Sphere in a Spherical Cavity with Arbitrary Zeta Potential Distributions. Langmuir, 23, 7928-7935.
http://dx.doi.org/10.1021/la7004002
[32] Keh, H.J. and Cheng, T.F. (2011) Sedimentation of a Charged Colloidal Sphere in a Charged Cavity. Journal of Chemical Physics, 135, Article ID: 214706.
http://dx.doi.org/10.1063/1.3663380
[33] Teubner, M. (1982) The Motion of Charged Colloidal Particles in Electric Fields. Journal of Chemical Physics, 76, 5564-5573.
http://dx.doi.org/10.1063/1.442861
[34] Yoon, B.J. (1991) Electrophoretic Motion of Spherical Particles with a Nonuniform Charge Distribution. Journal of Colloid and Interface Science, 142, 575-581.
http://dx.doi.org/10.1016/0021-9797(91)90087-O
[35] Keh, H.J. and Hsieh, T.H. (2008) Electrophoresis of a Colloidal Sphere in a Spherical Cavity with Arbitrary Zeta Potential Distributions and Arbitrary Double-Layer Thickness. Langmuir, 24, 390-398.
http://dx.doi.org/10.1021/la702399u
[36] Miloh, T. (2011) Dipolophoresis of Interacting Conducting Nano-Particles of Finite Electric Double Layer Thickness. Physics of Fluids, 23, Article ID: 122002.
http://dx.doi.org/10.1063/1.3671681
[37] Hsieh, T.H. and Keh, H.J. (2013) Magnetohydrodynamic Motion of a Colloidal Sphere with Self-Electrochemical Surface Reactions in a Spherical Cavity. Journal of Chemical Physics, 138, Article ID: 074105.
http://dx.doi.org/10.1063/1.4791637

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.