[1]
|
Chaibi, M.T. and El-Nashar, A.M. (2009) Solar Thermal Processes. In: Cipollina, A., Micale, G. and Rizzuti, L., Eds., Seawater Desalination: Conventional and Renewable Energy Processes, Springer, London, 131-163.
|
[2]
|
Arellano, N. (2011) La planta solar de desalación de agua de Las Salinas (1872). Literatura y memoria de una experiencia pionera. Quaderns d’Història de l’Enginyeria, 12, 229-251.
|
[3]
|
Nebbia, G. (2005) Early Work on Solar Distillation in Italy, 1953-1970. In: Goswami, D.Y., Vijayaraghavan, S. and Campbell-Howe, R., Eds., Proceedings of the Solar World Congress 2005, American Solar Energy Society, Boulder, 2709-2713.
|
[4]
|
Kalogirou, S. (2005) Seawater Desalination Using Renewable Energy Sources. Progress in Energy and Combustion Science, 31, 242-281. http://dx.doi.org/10.1016/j.pecs.2005.03.001
|
[5]
|
Maurel, A.(1981) La desalinización del agua de mar. Mundo Científico, 1, 296-305.
|
[6]
|
Malik, M.A.S., Tiwari, G.N., Kumar, A. and Sodha, M.S. (1982) Solar Distillation: A Practical Study of a Wide Range of Stills and Their Optimum Design, Construction and Performance. Pergamon Press, Oxford.
|
[7]
|
Telkes, M. (1953) Fresh Water from Sea Water by Solar Distillation. Industrial & Engineering Chemistry, 45, 1108-1114. http://dx.doi.org/10.1021/ie50521a062
|
[8]
|
Dunkle, R.V. (1961) Solar Water Distilation: The Roof Type Still and a Multiple Effect Diffusion Still. Proceedings of International Heat Transfer Conference,University of Colorado, Boulder, Colorado, Part V, 895-902.
|
[9]
|
Morse, R.N. and Read, W.R. (1968) A Rational Basis for the Engineering Development of a Solar Still. International Journal of Solar Energy, 12, 5-17. http://dx.doi.org/10.1016/0038-092X(68)90021-2
|
[10]
|
Cooper, P.I. (1969) Digital Simulation of Transient Solar Still Processes. International Journal of Solar Energy, 12, 313-331. http://dx.doi.org/10.1016/0038-092X(69)90046-2
|
[11]
|
Ali, H.M. (1993) Effect of Forced Convection inside the Solar Still on Heat and Mass Transfer Coefficients. Energy Conversion and Management, 34, 73-79. http://dx.doi.org/10.1016/0196-8904(93)90009-Y
|
[12]
|
Singh, A.K. and Tiwari, G.N. (1992) Performance Study of Double Effect Distillation in a Multiwick Solar Still. Energy Conversion Management, 33, 175-181. http://dx.doi.org/10.1016/0196-8904(92)90127-I
|
[13]
|
Sharma, V.B. and Mullick, S.C. (1993) Calculation of Hourly Output of a Solar Still. ASME Journal of Solar Energy Engineering, 118, 1-6.
|
[14]
|
Shawaqfeh, A.T. and Farid, M.M. (1995) New Development in the Theory of Heat and Mass Transfer in Solar Stills. Solar Energy, 55, 527-535. http://dx.doi.org/10.1016/0038-092X(95)00069-4
|
[15]
|
Mowla, D. and Karimi, G. (1995) Mathematical Modelling of Solar Stills in Iran. Solar Energy Journal, 55, 389-393.
http://dx.doi.org/10.1016/0038-092X(95)00041-O
|
[16]
|
Tiwari, G.N., Singh, H.N. and Tripathi, R. (2003) Present Status of Solar Distillation. Solar Energy, 75, 367-373.
http://dx.doi.org/10.1016/j.solener.2003.07.005
|
[17]
|
World Data Bank (2011) World Development Indicators. United States.
http://databank.worldbank.org/data/views/reports/tableview.aspx?isshared=true
|
[18]
|
World Energy Council (2013) World Energy Resources: Solar.
http://www.worldenergy.org/wp-content/uploads/2013/10/WER_2013_8_Solar_revised.pdf
|
[19]
|
Modest, F.M. (2003) Radiative Heat Transfer. 2nd Edition, Academic Press, Boston.
|
[20]
|
Gearhart, C.A. (2002) Planck, the Quantum and the Historians. Physics in Perspective, 4, 170-215.
http://dx.doi.org/10.1007/s00016-002-8363-7
|
[21]
|
Duffie, J.A. and Beckman, W.A. (2006) Solar Engineering of Thermal Processes. 3rd Edition, Wiley, Hoboken.
|
[22]
|
Garrison, J.D. and Roeder, S.B.W. (1999) Environmental Measurement. In: Webster, J.G., Ed., Measurement, Instrumentation and Sensors Handbook, CRC Press, Boca Raton, pp. 73.1, 1-64.
|
[23]
|
Anonymous (2002) Units and Symbols in Solar Energy. Solar Energy, 73, III-V.
http://dx.doi.org/10.1016/S0038-092X(02)00081-6
|
[24]
|
Aboul-Enein, S., El-Sebaii, A.A. and El-Bialy, E. (1998) Investigation of a Single-Basin Solar Still with Deep Basins. Renewable Energy, 14, 299-305. http://dx.doi.org/10.1016/S0960-1481(98)00081-0
|
[25]
|
McAdams, W.H. (1954) Heat Transmission. McGraw-Hill, New York.
|
[26]
|
El-Sebaii, A.A. (2000) Effect of Wind Speed on Some Designs of Solar Stills. Energy Conversion and Management, 41, 523-538. http://dx.doi.org/10.1016/S0196-8904(99)00119-3
|
[27]
|
Kumar, S. and Tiwari, G.N. (1996) Performance Evaluation of an Active Solar Distillation System. Energy, 21, 805-808. http://dx.doi.org/10.1016/0360-5442(96)00015-1
|
[28]
|
Tiwari, G.N., Kumar, S., Sharma, P.B. and Khan, M.E. (1996) Instantaneous Thermal Efficiency of an Active Solar Still. Applied Thermal Energy, 16, 189-192. http://dx.doi.org/10.1016/1359-4311(95)00053-G
|
[29]
|
Yadav, Y.P. and Prasad, A.S. (1995) Performance Analysis of a High Temperature Solar Distillation System. Energy Conversion and Management, 36, 365-374. http://dx.doi.org/10.1016/0196-8904(95)98901-X
|
[30]
|
Tripathi, R. and Tiwari, G.N. (2005) Effect of Water Depth on Internal Heat and Mass Transfer for Active Solar Distillation. Desalination, 173, 187-200. http://dx.doi.org/10.1016/j.desal.2004.08.032
|
[31]
|
Tayel, S.A., El-Nakib, A.A., El-Meseery, A.A. and Badr, M.M. (2009) Solar Energy Utilization in Water Distillation. Misr Journal of Agricultural Engineering, 26, 428-452.
|
[32]
|
Badran, O.O. (2007) Experimental Study of the Enhancement Parameters on a Single Slope Solar Still Productivity. Desalination, 209, 136-143. http://dx.doi.org/10.1016/j.desal.2007.04.022
|
[33]
|
Keith, F. and Kreider, J.F. (1978) Principles of Solar Engineering. Hemisphere, Washington DC.
|
[34]
|
Rahbar, N. and Esfahani, J.A. (2013) Productivity Estimation of a Single-Slope Solar Still: Theoretical and Numerical Analysis. Energy, 49, 289-297. http://dx.doi.org/10.1016/j.energy.2012.10.023
|
[35]
|
Khalifa, A.J.N. (2011) On the Effect of Cover Tilt Angle of the Simple Solar Still on Its Productivity in Different Seasons and Latitudes. Energy Conversion and Management, 52, 431-436.
http://dx.doi.org/10.1016/j.enconman.2010.07.018
|
[36]
|
Baum, V.A. and Bairamov, R. (1964) Heat and Mass Transfer Processes in Solar Stills of Hotbox Type. International Journal of Solar Energy, 8, 78-82. http://dx.doi.org/10.1016/0038-092X(64)90081-7
|
[37]
|
Porta-Gándara, M.A., Chargoy, N. and Fernandez-Zayas, J.L. (1997) Extreme Operating Conditions in Shallow Solar Stills. Solar Energy, 61, 465-476.
|
[38]
|
Tiwari, G.N., Emran, K.M. and Goyal, R.K. (1998) Experimental Study of Evaporation in Distillation. Desalination, 115, 121-128. http://dx.doi.org/10.1016/S0011-9164(98)00031-9
|
[39]
|
Porta-Gándara, M.A., Rubio, E. and Fernandez J.L. (1998) Visualization of Natural Convection inside Shallow Solar Stills. Experiments in Fluids, 25, 369-370. http://dx.doi.org/10.1007/s003480050242
|
[40]
|
Zheng, H.F., Zhang, X.Y., Zhang, J. and Wu, Y.Y. (2002) A Group of Improved Heat and Mass Transfer Correlations in Solar Stills. Energy Conversion and Management, 43, 2469-2478.
http://dx.doi.org/10.1016/S0196-8904(01)00185-6
|
[41]
|
Rubio-Cerda, E., Porta-Gándara, M.A. and Fernandez, J.L. (2000) Cavity Geometry Influence on Mass Flow Rate for Single and Double Slope Solar Stills. Applied Thermal Engineering, 20, 1105-1111.
http://dx.doi.org/10.1016/S1359-4311(99)00085-X
|
[42]
|
Porta-Gándara, M.A., Cervantes, J.G. and Solorio, F.J. (2004) Periodic Enclosed Natural Convection in a Laboratory Solar Still. Experiments in Fluids, 37, 483-487. http://dx.doi.org/10.1007/s00348-004-0831-1
|
[43]
|
Bird, B.R., Edward, W.E. and Lightfoot, E.N. (2007) Transport Phenomena. John Wiley & Sons, New York.
|
[44]
|
Lienhard IV, J.H. and Lienhard V, J.H. (2003) A Heat Transfer Textbook. Phlogiston Press, Cambridge.
|
[45]
|
Ahsan, A. and Fukuhara, T. (2009) Condensation Mass Transfer in Unsaturated Humid Air inside Tubular Solar Still. Annual Journal of Hydraulic Engineering, 53, 97-102.
|
[46]
|
Pong, L. and Moses, G.A. (1986) Vapor Condensation in the Presence of a Noncondensable Gas. Physics of Fluids, 29, 1796-1804. http://dx.doi.org/10.1063/1.865607
|
[47]
|
Caruso, G., Di Maio, D.V. and Naviglio, A. (2013) Condensation Heat Transfer Coefficient with Noncondensable Gases inside Near Horizontal Tubes. Desalination, 309, 247-253. http://dx.doi.org/10.1016/j.desal.2012.10.026
|
[48]
|
Cussler, E.L. (2007) Diffusion, Mass Transfer in Fluid Systems. Cambridge University Press, New York.
|
[49]
|
Watmuff, J.H., Charters, W.W.S. and Proctor, D. (1977) Solar and Wind Induced External Coefficients for Solar Collectors. Revue Internationale d’Heliotechnique, 2, 56.
|
[50]
|
Bejan, A. (1998) Advanced Engineering Thermodynamics. Wiley, New York.
|
[51]
|
Szargut, J., Morris, D.R. and Steward, F.R. (1988) Exergy Analysis of Thermal, Chemical & Metallurgical Processes. Hemisphere Publishing Corporation, New York.
|
[52]
|
Serova, E.N. and Brodianski, V.M. (2004) The Concept “Environment” in Exergy Analysis: Some Special Cases. Energy, 29, 2397-2401. http://dx.doi.org/10.1016/j.energy.2004.03.044
|
[53]
|
Pons, M. (2009) On the Reference State for Exergy When Ambient Temperature Fluctuates. International Journal of Thermophysics, 12, 113-121.
|
[54]
|
Bosnjakovic, F. (1965) Technical Thermodynamics. Holt, New York.
|
[55]
|
Sciubba, E. and Wall, G. (2007) A Brief Commented History of Exergy from the Beginnings to 2004. International Journal of Thermophysics, 10, 1-26.
|
[56]
|
Kotas, T.J. (1994) The Exergy Method of Thermal Plant Analysis. Butterworths, London.
|
[57]
|
Moran, J.M. (1989) Availability Analysis: A Guide to Efficient Energy Use. ASME Press, New York.
|
[58]
|
Petela, R. (1964) Exergy of Radiation. Journal of Heat Transfer, 86, 187-192. http://dx.doi.org/10.1115/1.3687092
|
[59]
|
Torchia-Nu?ez, J.C., Porta-Gandara, M.A. and Cervantes-de Gortari, J.G. (2008) Exergy Analysis of a Passive Solar Still. Renewable Energy, 33, 608-616. http://dx.doi.org/10.1016/j.renene.2007.04.001
|