Share This Article:

Solar Driven Wind Speed Monitoring System Using Wireless or Wired Sensors

Abstract Full-Text HTML Download Download as PDF (Size:2967KB) PP. 213-221
DOI: 10.4236/epe.2014.69019    3,630 Downloads   4,301 Views   Citations

ABSTRACT

Instrumented towers are being constructed to characterize vertical wind profiles in order to improve the understanding and characterization of a desired environment up to 100 m. The site being measured is at a height of 2500 m over sea level, in one side of Sierra Madre Oriental, which crosses Mexico from North to South. As the site has no energy, it was powered by a photovoltaic system. Power consumption of two sets of sensors fixed at the tower was evaluated. The first sensor set consisted of a pulsed anemometer and a RH sensor having a 0 - 10 V output; these sensors used cables for transmitting the output signals. Three cup anemometers fixed at 25, 35 and 45 m high measured wind speed. Wireless sensors in the second set, requires of a power consumption and battery life study. Solar cells energized the sensors, becoming the installation and operation easier. The datalogger that acquired the RH and T measurements encountered an 11% voltage loss throughout the cable; cup anemometer measurements did not show variations due to its pulsed signals. Wireless sensors drew less energy from the PV system, resulting in battery overcharge. A dump regulator turned-on a 200 W lamp during the night when the battery voltage reached 14 V; the lamp was turned-off when the battery voltage felt beneath 11.5 V. Considering the high wind available, wireless sensors batteries were charged by small wind turbines combined with 5 W solar panels.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Hahn, F. , Pablo, M. and Reyes, J. (2014) Solar Driven Wind Speed Monitoring System Using Wireless or Wired Sensors. Energy and Power Engineering, 6, 213-221. doi: 10.4236/epe.2014.69019.

References

[1] American Wind Energy Association (AWEA) (2006) Wind Power Outlook 2006.
http://www.awea.org/pubs/documents/Outlook_2006.pdf
[2] USA Environmental Protection Agency (EPA) (2000) Meteorological Monitoring Guidance for Regulatory Modeling Applications. EPA-454/R-99-005.
[3] WRIGHT (2012) Uranium Study: Air Quality Monitoring Report. DEQ/DMME Contract No. EP881027. Wright Environmental Services Inc., 1-69.
[4] de Noord, M., Curvers, A., Eecen, P., Antoniou, I., J?rgensen, H.E., Pedersen, T.F., Bradley, S., von Hünerbein, S., Kindler, D., Mellinghoff, H. and Emeis, S. (2005) WISE Wind Energy SODAR Evaluation Final Report. EU Project NNE5-2001-297, ECN-C--05-044, 1-95.
[5] Antoniou, I., J?rgensen, H.E., von Hünerbein, S., Bradley, S.G., Kindler, D., Warmbier, G. and de Noord, M. (2004) The Profiler Inter-Comparison Experiment (PIE). European Wind Energy Conference (EWEC), London, 22-25 November 2004.
[6] Suriyachai, P., Roedig, U. and Scott, A. (2012) A Survey of MAC Protocols for Mission-Critical Applications in Wireless Sensor Networks. IEEE Communications Surveys & Tutorials, 14, 240-264.
http://dx.doi.org/10.1109/SURV.2011.020211.00036
[7] Klaib, A.R., Shubair, R.M., Al-Qutayri, M.A. and Ng, J.W.P. (2011) An Overview of Localization Techniques for Wireless Sensor Networks. International Conference on Innovations in Information Technology, Abu Dhabi, 25-27 April 2011, 167-172.
[8] Crossbow (2012) Wireless Measurement System: MICAz. MICAz Data Sheet.
[9] Sudevalyam, S. and Kulkarni, P. (2011) Energy Harvesting Sensor Nodes: Survey and Implication. IEEE Communications Surveys and Tutorials, 13, 443-461.
http://dx.doi.org/10.1109/SURV.2011.060710.00094
[10] Devabhaktuni, V., Alam, M., Depuru, S.S.,Green, R. C.Nims, D., and Near, C. (2013) Solar energy:Trends and enabling technologies. Renewable and Sustainable Energy Reviews, 19, 555-564.
http://dx.doi.org/10.1016/j.rser.2012.11.024
[11] Bates, J., Dudney, N.J., Neudecker, B., Ueda, A. and Evans, C.D. (2000) Thin-Film Lithium and Lithium-Ion Batteries. Solid State Ionics, 135, 33-45.
http://dx.doi.org/10.1016/S0167-2738(00)00327-1
[12] Simjee, F. and Chou, P.H. (2006) Everlast: Long-Life, Supercapacitor-Operated Wireless Sensor Node. Proceedings of the 2006 International Symposium on Low Power Electronics and Design, Tegernsee, 4-6 October 2006, 197-202.
[13] Holloday, J.D., Jones, E.O., Phelps, M. and Hu, J. (2002) Microfuel Processor for Use in a Miniature Power Supply. Journal of Power Sources, 108, 21-27.
http://dx.doi.org/10.1016/S0378-7753(01)01011-4
[14] Schaevitz, S.B., Franz, A.J., Jensen, K.F. and Schmidt, M.A. (2001) A Combustion-Based MEMS Thermoelectric Power Generator. 11th International Conference on Solid-State Sensors and Actuators, Munich, 10-14 June 2001, 30- 33.
[15] Nielsen, O.M., Arana, L.R., Baertsch, C.D., Jensen, K.F. and Schmidt, M.A. (2003) A Thermophotovoltaic Micro-Generator for Portable Power Applications. 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems, Boston, 8-12 June 2003, 714-717.
[16] Randall, J.F. (2003) On Ambient Energy Sources for Powering Indoor Electronic Devices. Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne, Switzerland.
[17] Corke, P., Valencia, P., Sikka, P., Wark, T. and Overs, L. (2007) Long-Duration Solar-Powered Wireless Sensor Networks. 4th Workshop on Embedded Networked Sensors, Cork.
[18] Yang, B. and Sun, D. (2013) Testing, Inspecting and Monitoring Technologies for Wind Turbine Blades: A Survey. Renewable and Sustainable Energy Reviews, 22, 515-526.
http://dx.doi.org/10.1016/j.rser.2012.12.056
[19] Lynch, J.P. and Loh, K.J. (2006). A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. The Shock and Vibration Digest, 38, 91-130.
http://dx.doi.org/10.1177/0583102406061499
[20] Ling, Q., Tian, Z., Yin, Y. and Li, Y. (2009) Localized Structural Health Monitoring Using Energy-Efficient Wireless Sensor Networks. IEEE Sensors Journal, 9, 1596-1604.
http://dx.doi.org/10.1109/JSEN.2009.2019318
[21] Hyers, R., McGowan, J., Sullivan, K., Manwell, J. and Syrett, B. (2006) Condition Monitoring and Prognosis of Utility Scale Wind Turbines. Energy Materials, 1, 187-203.
[22] Ishengoma, F. (2014) A Novel Design of IEEE 802.15.4 and Solar Based Autonomous Water Quality Monitoring Prototype Using ECHERP. International Journal of Computer Science and Network Solutions, 2, 24-36.
[23] Laurier, S. (2007) Experimental Analysis of Photovoltaic Energy Scavengers for Sensor Nodes. M.Sc. Thesis, Computer Engineering and Networks Laboratory, University of Ghent, Belgium.
[24] Han, S., Kang, Y., Park, K. and Jang, M. (2007) Design of Environment Monitoring System for Aquaculture Farms. 2007 Frontiers in the Convergence of Bioscience and Information Technologies, The Jeju Island, 11-13 October 2007, 889- 893.
[25] Shifeng, Y., Jing, K. and Jimin, Z. (2007) Wireless Monitoring System Foraquaculture Environment. IEEE International Workshop on RF Integration Technology, Singapore, 9-11 December 2007, 274-277.
[26] Lu, Y.L., Lin, C.Y. and Tsai, W.S. (2012) Application of Solar Wireless Sensor Network to Monitor Water-Quality in Cage Aquaculture Zone in the Inner Sea at Penghu. AFITA/WCCA 2012 Conference, Taiwan, 3-6 September 2012.
[27] Campbell Scientific (2009) Model 014A Met One Wind Speed Sensor Instruction Manual. Campbell Scientific Inc., Utah.
[28] Omni Instruments (2009) Humidity and Temperature Transmitter RHT-WM Operating Manual. Omni Instruments Inc., USA.
[29] Mantracourt (2009) T24-WSS Wind Speed Sensor (Anemometer). Zse Electronic Mess-Systeme & Sensortechnik Gmbh, Germany.
[30] Monnit (2012) Wireless Humidity (RH) Sensor. Monnit Corporation, Utah.
[31] Monnit (2013) Monnit Wi-Fi Humidity Sensor. Monnit Corporation, Utah.
[32] Swartz, R.A., Lynch, J.P., Zerbst, S., Sweetman, B. and Rolfes, R. (2010) Structural Monitoring of Wind Turbines Using Wireless Sensor Networks. Smart Structures and Systems, 6, 183-196.
http://dx.doi.org/10.12989/sss.2010.6.3.183
[33] Vick, B.D., Clark, R.N., Ling, J. and Ling, S. (2003) Remote Solar, Wind, and Hybrid Solar/Wind Energy Systems for Purifying Water. Journal of Solar Energy Engineering, 125, 107-111.
http://dx.doi.org/10.1115/1.1531148
[34] Martinez, T.M., Nelson, J.S. and Begay-Campbell, S. (2005) Remote Monitoring System Design-Sustainable Systems for the Navajo Tribal Utility Authority. Sandia National Laboratories, Albuquerque.
[35] Andreotti, A., Mottola,F., Pagano, M. and Velotto, G. (2008) Design Ofultracapacitor Based Filter for Isolated PV Source Feeding Pulsing Load. Electric Power Systems Research, 78, 1038-1046.
http://dx.doi.org/10.1016/j.epsr.2007.08.003
[36] Bergonzini, C., Brunelli, D. and Benini, L. (2010) Comparison of Energy Intake Prediction Algorithms for Systems Powered by Photovoltaic Harvesters. Microelectronics Journal, 41, 766-777.
http://dx.doi.org/10.1016/j.mejo.2010.05.003
[37] Logerais, P.O., Riou, O., Camara, M.A. and Durastanti, J.F. (2013) Study of Photovoltaic Energy Storage by Supercapacitors through Both Experimental and Modelling Approaches. Journal of Solar Energy, 2013, Article ID: 659014.
http://dx.doi.org/10.1155/2013/659014
[38] Rafik, F., Gualous, H., Gallay, R., Crausaz, A. and Berthon, A. (2007) Frequency, Thermal and Voltage Supercapacitor Characterization and Modeling. Journal of Power Sources, 165, 928-934.
http://dx.doi.org/10.1016/j.jpowsour.2006.12.021
[39] Sevcik, P. and Kovar, O. (2013) Power Unit Based on Supercapacitors and Solar Cell Module. 1st International Virtual Scientific Conference, Zilina, 10-14 June 2013, 468-471.
[40] Martino, M. and Varley, J. (2012) A Wireless Sensor Node Powered by a PV/Supercapacitor/Battery Trio. University of Toronto, Toronto. www.ti.com/corp/docs/university/
docs/University_of_Toronto_Wireless_Sensor_Node_MatthewMartino_JordanVarley.pdf
[41] American Wind Energy Association (AWEA) (2006) Wind Power Outlook 2006.
http://www.awea.org/pubs/documents/Outlook_2006.pdf
[42] USA Environmental Protection Agency (EPA) (2000) Meteorological Monitoring Guidance for Regulatory Modeling Applications. EPA-454/R-99-005.
[43] WRIGHT (2012) Uranium Study: Air Quality Monitoring Report. DEQ/DMME Contract No. EP881027. Wright Environmental Services Inc., 1-69.
[44] de Noord, M., Curvers, A., Eecen, P., Antoniou, I., J?rgensen, H.E., Pedersen, T.F., Bradley, S., von Hünerbein, S., Kindler, D., Mellinghoff, H. and Emeis, S. (2005) WISE Wind Energy SODAR Evaluation Final Report. EU Project NNE5-2001-297, ECN-C--05-044, 1-95.
[45] Antoniou, I., J?rgensen, H.E., von Hünerbein, S., Bradley, S.G., Kindler, D., Warmbier, G. and de Noord, M. (2004) The Profiler Inter-Comparison Experiment (PIE). European Wind Energy Conference (EWEC), London, 22-25 November 2004.
[46] Suriyachai, P., Roedig, U. and Scott, A. (2012) A Survey of MAC Protocols for Mission-Critical Applications in Wireless Sensor Networks. IEEE Communications Surveys & Tutorials, 14, 240-264.
http://dx.doi.org/10.1109/SURV.2011.020211.00036
[47] Klaib, A.R., Shubair, R.M., Al-Qutayri, M.A. and Ng, J.W.P. (2011) An Overview of Localization Techniques for Wireless Sensor Networks. International Conference on Innovations in Information Technology, Abu Dhabi, 25-27 April 2011, 167-172.
[48] Crossbow (2012) Wireless Measurement System: MICAz. MICAz Data Sheet.
[49] Sudevalyam, S. and Kulkarni, P. (2011) Energy Harvesting Sensor Nodes: Survey and Implication. IEEE Communications Surveys and Tutorials, 13, 443-461.
http://dx.doi.org/10.1109/SURV.2011.060710.00094
[50] Devabhaktuni, V., Alam, M., Depuru, S.S.,Green, R. C.Nims, D., and Near, C. (2013) Solar energy:Trends and enabling technologies. Renewable and Sustainable Energy Reviews, 19, 555-564.
http://dx.doi.org/10.1016/j.rser.2012.11.024
[51] Bates, J., Dudney, N.J., Neudecker, B., Ueda, A. and Evans, C.D. (2000) Thin-Film Lithium and Lithium-Ion Batteries. Solid State Ionics, 135, 33-45.
http://dx.doi.org/10.1016/S0167-2738(00)00327-1
[52] Simjee, F. and Chou, P.H. (2006) Everlast: Long-Life, Supercapacitor-Operated Wireless Sensor Node. Proceedings of the 2006 International Symposium on Low Power Electronics and Design, Tegernsee, 4-6 October 2006, 197-202.
[53] Holloday, J.D., Jones, E.O., Phelps, M. and Hu, J. (2002) Microfuel Processor for Use in a Miniature Power Supply. Journal of Power Sources, 108, 21-27.
http://dx.doi.org/10.1016/S0378-7753(01)01011-4
[54] Schaevitz, S.B., Franz, A.J., Jensen, K.F. and Schmidt, M.A. (2001) A Combustion-Based MEMS Thermoelectric Power Generator. 11th International Conference on Solid-State Sensors and Actuators, Munich, 10-14 June 2001, 30- 33.
[55] Nielsen, O.M., Arana, L.R., Baertsch, C.D., Jensen, K.F. and Schmidt, M.A. (2003) A Thermophotovoltaic Micro-Generator for Portable Power Applications. 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems, Boston, 8-12 June 2003, 714-717.
[56] Randall, J.F. (2003) On Ambient Energy Sources for Powering Indoor Electronic Devices. Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne, Switzerland.
[57] Corke, P., Valencia, P., Sikka, P., Wark, T. and Overs, L. (2007) Long-Duration Solar-Powered Wireless Sensor Networks. 4th Workshop on Embedded Networked Sensors, Cork.
[58] Yang, B. and Sun, D. (2013) Testing, Inspecting and Monitoring Technologies for Wind Turbine Blades: A Survey. Renewable and Sustainable Energy Reviews, 22, 515-526.
http://dx.doi.org/10.1016/j.rser.2012.12.056
[59] Lynch, J.P. and Loh, K.J. (2006). A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. The Shock and Vibration Digest, 38, 91-130.
http://dx.doi.org/10.1177/0583102406061499
[60] Ling, Q., Tian, Z., Yin, Y. and Li, Y. (2009) Localized Structural Health Monitoring Using Energy-Efficient Wireless Sensor Networks. IEEE Sensors Journal, 9, 1596-1604.
http://dx.doi.org/10.1109/JSEN.2009.2019318
[61] Hyers, R., McGowan, J., Sullivan, K., Manwell, J. and Syrett, B. (2006) Condition Monitoring and Prognosis of Utility Scale Wind Turbines. Energy Materials, 1, 187-203.
[62] Ishengoma, F. (2014) A Novel Design of IEEE 802.15.4 and Solar Based Autonomous Water Quality Monitoring Prototype Using ECHERP. International Journal of Computer Science and Network Solutions, 2, 24-36.
[63] Laurier, S. (2007) Experimental Analysis of Photovoltaic Energy Scavengers for Sensor Nodes. M.Sc. Thesis, Computer Engineering and Networks Laboratory, University of Ghent, Belgium.
[64] Han, S., Kang, Y., Park, K. and Jang, M. (2007) Design of Environment Monitoring System for Aquaculture Farms. 2007 Frontiers in the Convergence of Bioscience and Information Technologies, The Jeju Island, 11-13 October 2007, 889- 893.
[65] Shifeng, Y., Jing, K. and Jimin, Z. (2007) Wireless Monitoring System Foraquaculture Environment. IEEE International Workshop on RF Integration Technology, Singapore, 9-11 December 2007, 274-277.
[66] Lu, Y.L., Lin, C.Y. and Tsai, W.S. (2012) Application of Solar Wireless Sensor Network to Monitor Water-Quality in Cage Aquaculture Zone in the Inner Sea at Penghu. AFITA/WCCA 2012 Conference, Taiwan, 3-6 September 2012.
[67] Campbell Scientific (2009) Model 014A Met One Wind Speed Sensor Instruction Manual. Campbell Scientific Inc., Utah.
[68] Omni Instruments (2009) Humidity and Temperature Transmitter RHT-WM Operating Manual. Omni Instruments Inc., USA.
[69] Mantracourt (2009) T24-WSS Wind Speed Sensor (Anemometer). Zse Electronic Mess-Systeme & Sensortechnik Gmbh, Germany.
[70] Monnit (2012) Wireless Humidity (RH) Sensor. Monnit Corporation, Utah.
[71] Monnit (2013) Monnit Wi-Fi Humidity Sensor. Monnit Corporation, Utah.
[72] Swartz, R.A., Lynch, J.P., Zerbst, S., Sweetman, B. and Rolfes, R. (2010) Structural Monitoring of Wind Turbines Using Wireless Sensor Networks. Smart Structures and Systems, 6, 183-196.
http://dx.doi.org/10.12989/sss.2010.6.3.183
[73] Vick, B.D., Clark, R.N., Ling, J. and Ling, S. (2003) Remote Solar, Wind, and Hybrid Solar/Wind Energy Systems for Purifying Water. Journal of Solar Energy Engineering, 125, 107-111.
http://dx.doi.org/10.1115/1.1531148
[74] Martinez, T.M., Nelson, J.S. and Begay-Campbell, S. (2005) Remote Monitoring System Design-Sustainable Systems for the Navajo Tribal Utility Authority. Sandia National Laboratories, Albuquerque.
[75] Andreotti, A., Mottola,F., Pagano, M. and Velotto, G. (2008) Design Ofultracapacitor Based Filter for Isolated PV Source Feeding Pulsing Load. Electric Power Systems Research, 78, 1038-1046.
http://dx.doi.org/10.1016/j.epsr.2007.08.003
[76] Bergonzini, C., Brunelli, D. and Benini, L. (2010) Comparison of Energy Intake Prediction Algorithms for Systems Powered by Photovoltaic Harvesters. Microelectronics Journal, 41, 766-777.
http://dx.doi.org/10.1016/j.mejo.2010.05.003
[77] Logerais, P.O., Riou, O., Camara, M.A. and Durastanti, J.F. (2013) Study of Photovoltaic Energy Storage by Supercapacitors through Both Experimental and Modelling Approaches. Journal of Solar Energy, 2013, Article ID: 659014.
http://dx.doi.org/10.1155/2013/659014
[78] Rafik, F., Gualous, H., Gallay, R., Crausaz, A. and Berthon, A. (2007) Frequency, Thermal and Voltage Supercapacitor Characterization and Modeling. Journal of Power Sources, 165, 928-934.
http://dx.doi.org/10.1016/j.jpowsour.2006.12.021
[79] Sevcik, P. and Kovar, O. (2013) Power Unit Based on Supercapacitors and Solar Cell Module. 1st International Virtual Scientific Conference, Zilina, 10-14 June 2013, 468-471.
[80] Martino, M. and Varley, J. (2012) A Wireless Sensor Node Powered by a PV/Supercapacitor/Battery Trio. University of Toronto, Toronto. www.ti.com/corp/docs/university/docs/University
_of_Toronto_Wireless_
Sensor_Node_MatthewMartino_JordanVarley.pdf

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.