[1]
|
Ghman, I.I. and Skorohod, A.V. (1972) Stochastic Differential Equations. Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-3-642-88264-7
|
[2]
|
Bertsekas, D. (2007) Dynamic Programming and Optimal Control, Vols. I and II. Athena Scientific.
|
[3]
|
Fleming, W.H. and Soner, H.M. (2006) Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, Berlin.
|
[4]
|
Annunziato, M. and Borzì, A. (2010) Optimal Control of Probability Density Func-tions of Stochastic Processes. Mathematical Modelling and Analysis, 15, 393-407. http://dx.doi.org/10.3846/1392-6292.2010.15.393-407
|
[5]
|
Annunziato, M. and Borzì, A. (2013) A Fokker-Planck Control Framework for Multidimensional Stochastic Processes. Journal of Computational and Applied Mathematics, 237, 487-507. http://dx.doi.org/10.1016/j.cam.2012.06.019
|
[6]
|
Cox, D.R. and Miller, H.D. (2001) The Theory of Stochastic Processes. Chapman & Hall/CRC, London.
|
[7]
|
Fleming, W.H. and Rishel, R.W. (1975) Deterministic and Stochastic Optimal Control. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-1-4612-6380-7
|
[8]
|
Borkar, V.S. (2005) Controlled Diffusion Processes. Probability Surveys, 2, 213-244.
http://dx.doi.org/10.1214/154957805100000131
|
[9]
|
Falcone, M. (2008) Numerical Solution of Dynamic Programming Equations. In: Bardi, M. and Dolcetta, I.C., Eds., Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhauser.
|
[10]
|
Kushner, H.J. (1990) Numerical Methods for Stochastic Control Problems in Continuous Time. SIAM Journal on Control and Optimization, 28, 999-1048. http://dx.doi.org/10.1137/0328056
|
[11]
|
Forbes, M.G., Guay, M. and Forbes, J.F. (2004) Control Design for First-Order Processes: Shaping the Probability Density of the Process State. Journal of Process Control, 14, 399-410.
http://dx.doi.org/10.1016/j.jprocont.2003.07.002
|
[12]
|
Jumarie, G. (1992) Tracking Control of Nonlinear Stochastic Systems by Using Path Cross-Entropy and Fokker-Planck Equation. International Journal of Systems Science, 23, 1101-1114. http://dx.doi.org/10.1080/00207729208949368
|
[13]
|
Kárny, M. (1996) Towards Fully Probabilistic Control Design. Automatica, 32, 1719-1722.
http://dx.doi.org/10.1016/S0005-1098(96)80009-4
|
[14]
|
Wang, H. (1999) Robust Control of the Output Probability Density Functions for Multivariable Stochastic Systems with Guaranteed Stability. IEEE Transactions on Automatic Control, 44, 2103-2107.
http://dx.doi.org/10.1109/9.802925
|
[15]
|
Primak, S., Kontorovich, V. and Lyandres, V. (2004) Stochastic Methods and Their Applications to Communications. John Wiley & Sons, Chichester.
|
[16]
|
Risken, R. (1996) The Fokker-Planck Equation: Methods of Solution and Applications. Springer, Berlin.
|
[17]
|
Lions, J.L. (1983) On the Hamilton-Jacobi-Bellman Equations. Acta Applicandae Mathematica, 1, 17-41.
http://dx.doi.org/10.1007/BF02433840
|
[18]
|
Crandall, M., Ishii, H. and Lions, P.L. (1992) User’s Guide to Viscosity Solutions of Second Order Partial Differential Equations. Bulletin of the American Mathematical Society, 27, 1-67.
http://dx.doi.org/10.1090/S0273-0979-1992-00266-5
|
[19]
|
Le Bris, C. and Lions, P.L. (2008) Existence and Uniqueness of Solutions to Fokker-Planck Type Equations with Irregular Coefficients. Communications in Partial Differential Equations, 33, 1272-1317.
|
[20]
|
Aronson, D.G. (1968) Non-Negative Solutions of Linear Parabolic Equations. Annali della Scuola Normale Superiore di Pisa. Classe di Scienze, 22, 607-694.
|
[21]
|
Bogachev, V., Da Prato, G. and Röckner, M. (2010) Existence and Uniqueness of Solutions for Fokker-Planck Equations on Hilbert Spaces. Journal of Evolution Equations, 10, 487-509. http://dx.doi.org/10.1007/s00028-010-0058-y
|
[22]
|
Lions, J.L. (1971) Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin.
|
[23]
|
Lachapelle, A., Salomon, J. and Turinici, G. (2010) Computation of Mean Field Equilibria in Economics. Mathematical Models and Methods in Applied Sciences, 20, 567-588. http://dx.doi.org/10.1142/S0218202510004349
|
[24]
|
Carlier, G. and Salomon, J. (2008) A Monotonic Algorithm for the Optimal Control of the Fokker-Planck Equation. IEEE Conference on Decision and Control, CDC 2008, Cancun, 9-11 December 2008, 269-273.
|
[25]
|
Davis, M.H.A. (1984) Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models. Journal of the Royal Statistical Society. Series B (Methodological), 46, 353-388.
|
[26]
|
Annunziato, M. (2008) Analysis of Upwind Method for Piecewise Deterministic Markov Processes. Compu-tational Methods in Applied Mathematics, 8, 3-20.
|
[27]
|
Capuzzo Dolcetta, I. and Evans, L.C. (1984) Optimal Switching for Ordinary Differential Equations. SIAM Journal on Control and Optimization, 22, 143-161. http://dx.doi.org/10.1137/0322011
|
[28]
|
Annunziato, M. and Borzì, A. (2014) Optimal Control of a Class of Piecewise Deterministic Processes. European Journal of Applied Mathematics, 25, 1-25. http://dx.doi.org/10.1017/S0956792513000259
|
[29]
|
Moresino, F., Pourtallier, O. and Tidball, M. (1988) Using Viscosity Solution for Approximations in Piecewise Deterministic Control Systems. Report RR-3687-HAL-INRIA, Sophia-Antipolis.
|