[1]
|
Almgren, R. and Chriss, N. (1999) Value Under Liquidation. Risk, 12, 61-63.
|
[2]
|
Almgren, R. and Chriss, N. (2001) Optimal Execution of Portfolio Transactions. Journal of Risk, 3, 5-40.
|
[3]
|
Almgren, R.F. (2003) Optimal Execution with Nonlinear Impact Functions and Trading-Enhanced Risk. Applied Mathematical Finance, 10, 1-18. http://dx.doi.org/10.1080/135048602100056
|
[4]
|
Almgren, R. (2011) Optimal Trading with Stochastic Liquidity and Volatility. SIAM Journal of Financial Mathematics, 3, 163-181.
|
[5]
|
Almgren, R. and Lorenz, J. (2007) Adaptive Arrival Price. Journal of Trading, 2007, 59-66.
|
[6]
|
Forsyth, P.A., Kennedy, J.S., Tse, S.T. and Windcliff, H. (2009) Optimal Trade execution: A Mean Quadratic Variation Approach. Quantitative Finance,.
|
[7]
|
Lorenz, J. and Almgren, R. (2011) Mean-Variance Optimal Adaptive Execution. Applied Mathematical Finance, To Appear.
|
[8]
|
Tse, S.T., Forsyth, P.A., Kennedy, J.S. and Windcliff, H. (2011) Comparison between the Mean Variance Optimal and the Mean Quadratic Variation Optimal Trading Strategies. Applied Mathematical Finance, 20, 415-449.
|
[9]
|
Schied, A., Schoneborn, T. and Tehranchi, M. (2010) Optimal Basket Liquidation for Cara Investors Is Deterministic. Applied Mathematical Finance, 17, 471-489. http://dx.doi.org/10.1080/13504860903565050
|
[10]
|
Guéant, O. (2012) Optimal Execution and Block Trade Pricing: The General Case. Working Paper.
|
[11]
|
Schied, A. and Schoneborn, T. (2009) Risk Aversion and the Dynamics of Optimal Liquidation Strategies in Illiquid Markets. Finance and Stochastics, 13, 181-204. http://dx.doi.org/10.1007/s00780-008-0082-8
|
[12]
|
Obizhaeva, A. and Wang, J. (2005) Optimal Trading Strategy and Supply/Demand Dynamics. Technical Report, National Bureau of Economic Research, Cambridge. http://dx.doi.org/10.3386/w11444
|
[13]
|
Kratz, P. and Schoneborn, T. (2013) Optimal Liquidation in Dark Pools. EFA 2009 Bergen Meetings Paper.
|
[14]
|
Kratz, P. and Schoneborn, T. (2012) Portfolio Liquidation in Dark Pools in Continuous Time. Mathematical Finance, Early View.
|
[15]
|
Laruelle, S., Lehalle, C.A. and Pages, G. (2011) Optimal Split of Orders across Liquidity Pools: A Stochastic Algorithm Approach. SIAM Journal on Financial Mathematics, 2, 1042-1076. http://dx.doi.org/10.1137/090780596
|
[16]
|
Bayraktar, E. and Ludkovski, M. (2012) Liquidation in Limit Order Books with Controlled Intensity. Mathematical Finance, Early View. http://dx.doi.org/10.1111/j.1467-9965.2012.00529.x
|
[17]
|
Guéant, O. and Lehalle, C.A. (2012) General Intensity Shapes in Optimal Liquidation. Working Paper.
|
[18]
|
Guéant, O., Lehalle, C.A. and Fernandez-Tapia, J. (2012) Optimal Portfolio Liquidation with Limit Orders. SIAM Journal on Financial Mathematics, 3, 740-764. http://dx.doi.org/10.1137/110850475
|
[19]
|
Gatheral, J. (2010) No-Dynamic-Arbitrage and Market Impact. Quantitative Finance, 10, 749-759. http://dx.doi.org/10.1080/14697680903373692
|