Green Approach for In-Situ Growth of CdS Nanorods in Low Band Gap Polymer Network for Hybrid Solar Cell Applications

Abstract

In-situ growth of CdS nanorods (NRs) has been demonstrated via solvothermal, in a low band gap polymer, poly [[4,8-bis[(2-ethylhexyl)oxy] benzo [1,2-b:4,5-b’] dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno [3,4-b] thiophenediyl]] (PTB7). It is a high yielding, green approach as it removes use of volatile and hazardous chemicals such as pyridine as ligand which are conventionally used to synthesize precursors of CdS (NRs). Moreover the solvothermal process is a zero emission process being a close vessel synthesis and hence no material leaching into the atmosphere during the synthesis. The PTB7:CdS nanocomposite has been characterized by SEM, XRD, FTIR, UV-visible spectroscopy techniques. The photoluminescence (PL) spectroscopy study of PTB7 with CdS NRs has shown significant PL quenching by the incorporation of CdS NRs in PTB7; this shows that CdS NRs are efficient electron acceptors with the PTB7. The PTB7:CdS is used as active layer in the fabrication of hybrid solar cells (HSC) as donor-acceptor combination in the bulk heterojunction (BHJ) geometry. The HSCs fabricated using this active layer without any additional supporting fullerene based electron acceptor has given power conversion efficiency of above 1%.

Share and Cite:

Bhardwaj, R. , Bharti, V. , Sharma, A. , Mohanty, D. , Agrawal, V. , Vats, N. , Sharma, G. , Chaudhary, N. , Jain, S. , Gaur, J. , Banerjee, K. and Chand, S. (2014) Green Approach for In-Situ Growth of CdS Nanorods in Low Band Gap Polymer Network for Hybrid Solar Cell Applications. Advances in Nanoparticles, 3, 106-113. doi: 10.4236/anp.2014.33015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Mohanty, D. (2013) Study of Charge Transport and Device Properties in Low Band Gap Polymer PBDTTPD Based Nanostructure Materials for Solar Cell Applications. M.Tech Thesis, CSIR-National Physical Laboratory, & Academy of Scientific & Innovative Research, New Delhi.
[2] Ren, S., Chang, L.-Y., Lim, S.-K., Zhao, J., Smith, M., Zhao, N., Bulovic, V., Bawendi, M. and Gradecˇak, S. (2011) Inorganic-Organic Hybrid Solar Cell: Bridging Quantum Dots to Conjugated Polymer Nanowires. Nano Letters, 11, 3998-4002.
http://dx.doi.org/10.1021/nl202435t
[3] Dowland, S., Lutz, T., Ward, A., King, S.P., Sudlow, A., Hill, M.S., Molloy, K.C. and Haque, S.A. (2011) Direct Growth of Metal Sulfide Nanoparticle Networks in Solid-State Polymer Films for Hybrid Inorganic-Organic Solar Cells. Advanced Materials, 23, 2739-2744.
http://dx.doi.org/10.1002/adma.201100625
[4] Kwak, W.-C., Kim, T.G., Lee, W., Han, S.-H. and Sung, Y.-M. (2009) Template-Free Liquid-Phase Synthesis of HighDensity CdS Nanowire Arrays on Conductive Glass. The Journal of Physical Chemistry C, 113, 1615-1619.
http://dx.doi.org/10.1021/jp809365z
[5] Wang, L., Liu, Y., Jiang, X., Qin, D. and Cao, Y. (2007) Enhancement of Photovoltaic Characteristics Using a Suitable Solvent in Hybrid Polymer/Multiarmed CdS Nanorods Solar Cells. The Journal of Physical Chemistry C, 111, 95389542.
http://dx.doi.org/10.1021/jp0715777
[6] Zhong, M., Yang, D., Zhang, J., Shi, J., Wang, X. and Li, C. (2012) Improving the Performance of CdS/P3HT Hybrid Inverted Solar Cells by Interfacial Modification. Solar Energy Materials and Solar Cells, 96, 160-165.
http://dx.doi.org/10.1016/j.solmat.2011.09.041
[7] Leventis, H.C., King, S.P., Sudlow, A., Hill, M.S., Molloy, K.C. and Haque, S.A. (2010) Nanostructured Hybrid Polymer-Inorganic Solar Cell Active Layers Formed by Controllable in Situ Growth of Semiconducting Sulfide Networks. Nano Letters, 10, 1253-1258.
http://dx.doi.org/10.1021/nl903787j
[8] Lebeau, B. and Innocenzi, P. (2011) Hybrid Materials for Optics and Photonics. Chemical Society Reviews, 40, 886906.
http://dx.doi.org/10.1039/c0cs00106f
[9] Dong, H., Zhu, H., Meng, Q., Gong, X. and Hu, W. (2012) Organic Photoresponse Materials and Devices. Chemical Society Reviews, 41, 1754-808.
http://dx.doi.org/10.1039/c1cs15205j
[10] Bhardwaj, R.K., Kushwaha, H.S., Gaur, J., Upreti, T., Bharti, V., Gupta, V., Chaudhary, N., Sharma, G.D., Banerjee, K. and Chand, S. (2012) A Green Approach for Direct Growth of CdS Nanoparticles Network in Poly(3-hexylthiophene2,5-diyl) Polymer Film for Hybrid Photovoltaic. Materials Letters, 89, 195-197.
http://dx.doi.org/10.1016/j.matlet.2012.08.071
[11] Bhardwaj, R.K., et al. (2014) In-Situ Growth of CdS Nanorods in PTB7 by Solvothermal Process for Hybrid Organic Inorganic Solar Cell Applications. Physics of Semiconductor Devices. Springer International Publishing, Switzerland, 331-333.
[12] Bharti, V., Jain, S., Gaur, J., Sonania, A., Mohanty, D., Sharma, G.D. and Chand, S. (2014) Sustainable Organic Polymer Solar Cells Using TiO2 Derived from Automobile Paint Sludge. Physics of Semiconductor Devices, Springer International Publishing, Switzerland, 395-397.
[13] Mohanty, D., Bharti, V., Gaur, J., Bhardwaj, R., Sharma, G.D. and Chand, S. (2014) Charge Transport Studies in Pure and CdS Doped PBDTTPD:CdS Nanocomposite for Solar Cell Application. Physics of Semiconductor Devices, Springer International Publishing, Switzerland, 323-325.
http://dx.doi.org/10.1007/978-3-319-03002-9_81
[14] Gaur J., Jain, S., Chand, S. and Kaushik, N.K. (2014) Tin Sulfide Nanoparticle Synthesis from Waste Waters. American Journal of Analytical Chemistry, 5, 50-54.
http://dx.doi.org/10.4236/ajac.2014.52008
[15] Gaur, J., Jain, S., Bhatia, R., Lal, A. and Kaushik, N.K. (2013) Synthesis and Characterization of a Novel Copolymer of Glyoxal Dihydrazone and Glyoxal Dihydrazone Bis(dithiocarbamate) and Application in Heavy Metal Ion Removal from Water. Journal of Thermal Analysis and Calorimetry, 112, 1137-1143.
[16] Huynh, W.U., Dittmer, J.J. and Alivisatos, A.P. (2002) Hybrid Nanorod-Polymer Solar Cells. Science, 295, 2425-2457.
http://dx.doi.org/10.1126/science.1069156
[17] Dayal, S., Kopidakis, N., Olson, D.C., Ginley, D.S. and Rumbles, G. (2010) Photovoltaic Devices with a Low Band Gap Polymer and CdSe Nanostructures Exceeding 3% Efficiency. Nano Letters, 10, 239-242.
http://dx.doi.org/10.1021/nl903406s
[18] Huynh, W.U., Peng, X.G. and Alivisatos, A.P. (1999) CdSe Nanocrystal Rods/Poly(3-Hexylthiophene). Composite Photovoltaic Devices. Advanced Materials, 11, 923-927.
[19] Sun, B.Q., Snaith, H.J., Dhoot, A.S., Westenhoff, S. and Greenham, N.C. (2005) Vertically Segregated Hybrid Blends for Photovoltaic Devices with Improved Efficiency. Journal of Applied Physics, 97, Article No. 014914.
http://dx.doi.org/10.1063/1.1804613
[20] Zhou, Y., Li, Y.C., Zhong, H.Z., Hou, J.H., Ding, Y.Q., Yang, C.H. and Li, Y.F. (2006) Hybrid Nanocrystal/Polymer Solar Cells Based on Tetrapod-Shaped CdSexTe1-x Nanocrystals. Nanotechnology, 17, 4041-4047.
[21] Wang, L., Liu, Y.S., Jiang, X., Qin, D.H. and Cao, Y. (2007) Enhancement of Photovoltaic Characteristics Using a Suitable Solvent in Hybrid Polymer/Multiarmed CdS Nanorods Solar Cells. The Journal of Physical Chemistry C, 111, 9538-9542.
http://dx.doi.org/10.1021/jp0715777
[22] Kaito, C., Saito, Y. and Fujita, K. (1987) A New Preparation Method of Ultrafine Particles of Metallic Sulfides. Japanese Journal of Applied Physics, 26, L1973-L1975.
[23] Baker, D.R. and Kama, P.V. (2009) Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures. Advanced Functional Materials, 19, 805-811.
http://dx.doi.org/10.1002/adfm.200801173
[24] Wright, M. and Uddin, A. (2012) Organic-Inorganic Hybrid Solar Cells: A Comparative Review. Solar Energy Materials & Solar Cells, 107, 87-111.
http://dx.doi.org/10.1016/j.solmat.2012.07.006
[25] Leventis, H.C., King, S.P., Sudlow, A., Hill, M.S., Molloy, K.C. and Haque, S.A. (2010) Nanostructured Hybrid Polymer-Inorganic Solar Cell Active Layers Formed by Controllable in Situ Growth of Semiconducting Sulfide Networks. Nano Letters, 10, 1253-1258.
http://dx.doi.org/10.1021/nl903787j
[26] Dowland, S., Lutz, T., Ward, A., King, S.P., Sudlow, A., Hill, M.S., Molloy, K.C. and Haque, S.A. (2011) Direct Growth of Metal Sulfide Nanoparticle Networks in Solid-State Polymer Films for Hybrid Inorganic-Organic Solar Cells. Advanced Materials, 23, 2739-2744.
http://dx.doi.org/10.1002/adma.201100625
[27] Karlin, K.D. (2005) Progress in Inorganic Chemistry. 53, John Wiley & Sons, Inc., Hoboken, New Jersey.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.