[1]
|
Chiappini, C., Matteucci, F. and Gratton, R. (1997) The Chemical Evolution of the Galaxy: The Two-Infall Model. The Astrophysical Journal, 477, 765-780. http://dx.doi.org/10.1086/303726
|
[2]
|
Chang, R.X., Hou, J.L., Shu, C.G. and Fu, C.Q. (1999) Two-Component Model for the Chemical Evolution of the Galactic Disk. Astronomy and Astrophysics, 350, 38-48.
|
[3]
|
Tutukov, A.V., Shustov, B.M. and Wiebe, D.S. (2000) The Stellar Epoch in the Evolution of the Galaxy. Astronomy Reports, 44, 711-718. http://dx.doi.org/10.1134/1.1320496
|
[4]
|
Alibés, A., Labay, J. and Canal, R. (2001) Galactic Chemical Abundance Evolution in the Solar Neighborhood up to the Iron Peak. Astronomy and Astrophysics, 370, 1103-1121. http://dx.doi.org/10.1051/0004-6361:20010296
|
[5]
|
Sahijpal, S. and Gupta, G. (2013) Numerical Simulation of the Galactic Chemical Evolution: The Revised Solar Abundance. Meteoritics and Planetary Science, 48, 1007-1033. http://dx.doi.org/10.1111/maps.12123
|
[6]
|
Micali, A., Matteucci, F. and Romano, D. (2013) The Chemical Evolution of the Milky Way: The Three Infall Model. Monthly Notices of the Royal Astronomical Society, 436, 1648-1658. http://dx.doi.org/10.1093/mnras/stt1681
|
[7]
|
Snaith, O.N., et al. (2014) The Dominant Epoch of Star Formation in the Milky Way Formed the Thick Disk. The Astrophysical Journal Letters, 781, Article ID: L31.
|
[8]
|
Haywood, M. (2014) Galactic Chemical Evolution Revisited. Memorie della Societa Astronomica Italiana Supplement, eprint arXiv:1401.1864.
|
[9]
|
Asplund, M., Grevesse, N., Sauval, A.J. and Scott, P. (2009) The Chemical Composition of the Sun. Annual Review of Astronomy and Astrophysics, 47, 481-522. http://dx.doi.org/10.1146/annurev.astro.46.060407.145222
|
[10]
|
Sahijpal, S. (2013) Influence of Supernova SN Ia Rate and the Early Star Formation Rate on the Galactic Chemical Evolution. International Journal of Astrophysics and Astronomy, 3, 344-352.
http://dx.doi.org/10.4236/ijaa.2013.33038
|
[11]
|
Sahijpal, S. (2013) Inhomogeneous Chemical Evolution of the Galaxy in the Solar Neighbourhood. Journal of Astrophysics and Astronomy, 34, 297-316. http://dx.doi.org/10.1007/s12036-013-9188-2
|
[12]
|
Sahijpal, S. (2014) Contributions of Type II and Ib/c Supernovae to Galactic Chemical Evolution. Research in Astronomy and Astrophysics, 14, 693-704. http://dx.doi.org/10.1088/1674-4527/14/6/008
|
[13]
|
Sahijpal, S. (2014) Evolution of the Galaxy and the Birth of the Solar System: The Short-Lived Nuclides Connection. Journal of Astrophysics and Astronomy, 35, 121-142. http://dx.doi.org/10.1007/s12036-014-9298-5
|
[14]
|
Matteucci, F. Spitoni, E., Recchi, S. and Valiante, R. (2009) The Effect of Different Type Ia Supernova Progenitors on Galactic Chemical Evolution. Astronomy and Astrophysics, 501, 531-538.
|
[15]
|
Woosley, S.E. and Weaver, T.A. (1995) The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis. The Astrophysical Journal Supplement, 101, 181-235. http://dx.doi.org/10.1086/192237
|
[16]
|
Karakas, A.I. and Lattanzio, J.C. (2007) Stellar Models and Yields of Asymptotic Giant Branch Stars. Publications of the Astronomical Society of Australia, 24, 103-117. http://dx.doi.org/10.1071/AS07021
|
[17]
|
Iwamoto, K., et al. (1999) Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation. The Astrophysical Journal Supplement, 125, 439-462.
http://dx.doi.org/10.1086/313278
|