[1]
|
Curry, J.H., Garnett, L. and Sullivan, D. (1983) On the Iteration of a Rational Function: Computer Experiments with Newton’s Method. Communications in Mathematical Physics, 91, 267-277. http://dx.doi.org/10.1007/BF01211162
|
[2]
|
Blanchard, P. (1994) The Dynamics of Newton’s Method. Complex Dynamical Systems, Cincinnati. Proceedings of Symposia in Applied Mathematics, Vol. 49, AMS, Providence, 139-154.
|
[3]
|
Head, J.E. (1988) The Combinatorics of Newton’s Method for Cubic Polynomials. Doctoral Dissertation, Cornell University, Ithaca.
|
[4]
|
Lei, T. (1990) Cubic Newton’s Method of Thurston’s Type. Laboratoire de Mathématiques, Ecole Normale Superieure de Lyon. Preprint.
|
[5]
|
Roberts, G.E. and Horgan-Kobelski, J. (2004) Newton’s versus Halley’s Method: A Dynamical Systems Approach. International Journal of Bifurcation and Chaos, 14, 3459-3475. http://dx.doi.org/10.1142/S0218127404011399
|
[6]
|
Haeseler, F.V. and Kriete, H. (1993) Surgery for Relaxed Newton’s Method. Complex Variables, Theory and Application, 22, 129-143. http://dx.doi.org/10.1080/17476939308814653
|
[7]
|
Douady, A. and Hubbard, J.H. (1985) On the Dynamics of Polynomial-Like Mappings. Annales Scientifiques de L’Ecole Normal Superieure, 4e serie, t. 18, 287-343.
|
[8]
|
Milnor, J. (1992) Remarks on Iterated Cubic Maps. Experimental Mathematics, 1, 5-24.
|
[9]
|
Blanchard, P. (1981) Complex Analytic Dynamics on the Riemann Sphere. Bulletin of the American Mathematical Society (New Series), 11, 85-141. http://dx.doi.org/10.1090/S0273-0979-1984-15240-6
|
[10]
|
Milnor, J. (2006) Dynamics in One Complex Variable. 3rd Edition, Princeton University Press, Princeton.
|
[11]
|
Sutherland, S. (1989) Finding Roots of Complex Polynomials with Newton’s Method. Doctoral Dissertation, Boston University, Boston.
|
[12]
|
Devaney, R.L. (1992) A First Course in Chaotic Dynamical Systems. Westview Press.
|
[13]
|
MAPLE, Version 15.00 (2011) Maplesoft. Waterloo Maple Inc., Waterloo.
|