Synthesis of Carbon Nanotubes from Byproducts of Oil Refiner


Carbon nanotubes have been synthesized by using petroleum coke (PC) as carbon source. Different position of the PC in the reactor chamber and some other reaction parameters is strongly influenced to quantity of the obtained CNTs and their characteristics such as crystallinity, diameter (number of shels), and etc., which is analysed by scanning and tranmission electron microscopes (SEM and TEM). The thickness of the Fe catalyst deposited on Si and SiO2 substrates supported improves the quality, quantity and uniformity of CNTs. Wet-coated thin films of FeCl2 work well as catalyst, which can be profitable for mass production of CNTs.

Share and Cite:

Abdullayeva, S. , Musayeva, N. , Jabbarov, R. and Matsuda, T. (2014) Synthesis of Carbon Nanotubes from Byproducts of Oil Refiner. World Journal of Condensed Matter Physics, 4, 93-100. doi: 10.4236/wjcmp.2014.43014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.
[2] Harris, P.J. (1999) Carbon Nanotubes and Related Structures. Cambridge Univertsity, Cambridge.
[3] Dresselhaus, M.S., Dresselhaus, G. and Saito, R. (1992) Carbon Fibers Based on C60 and Their Symmetry. Physical Review B, 45, 6234.
[4] Mintmire, J.W., Dunlap, B.I. and White, C.T. (1992) Are Fullerene Tubules Metallic? Physical Review Letters, 68, 631.
[5] Hamada, N., Sawada, S. and Oshiyama, A. (1992) New One-Dimensional Conductors: Graphitic Microtubules. Physical Review Letters, 68, 1579.
[6] Iijima, S. and Ichihashi, T. (1993) Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature, 363, 603-605.
[7] Ebbesen, T.W. and Ajayan, P.M. (1992) Large-Scale Synthesis of Carbon Nanotubes. Nature, 358, 220-222.
[8] Charlier, J.-C. and Iijima, S. (2001) Growth Mechanisms of Carbon Nanotubes. Topics in Applied Physics, 80, 55-81.
[9] Gómez, J.A., Marquez, A., Pérez, A. and Duarte-Moller, A. (2012) Simple Method to Synthesize Functionalized Carbon Nanotubes Employing Cobalt Nitrate and Acetone by Using Spray Pyrolysis Deposition Technique. Advances in Materials Science and Engineering, Article ID: 258673.
[10] Krause, B., Ritschel, M., Taschner, Ch., Oswald, S., Gruner, W., Leonhardt, A. and Petschke, P. (2010) Comparison of Nanotubes Produced by Fixed Bed and Aerosol-CVD Methods and Their Electrical Percolation Behaviour in Melt Mixed Polyamide 6.6 Composites. Composites Science and Technology, 70, 151-160.
[11] Mayne, M., Grobert, N., Terrones, M., Kamalakaran, R., Ruhle, M., Kroto, H.W. and Walton, D.R.M. (2001) Pyrolytic Production of Aligned Carbon Nanotubes from Homogeneously Dispersed Benzene-Based Aerosols. Chemical Physics Letters, 338, 101-107.
[12] Barreiro, A., Kramberger, C., Rummeli, M.H., Gruneis, A., Grimma, D., Hampel, S., Gemming, T., Buechner, B., Bachtold, A. and Pichler, T. (2007) Control of the Single-Wall Carbon Nanotube Mean Diameter in Sulphur Promoted Aerosol-Assisted Chemical Vapour Deposition. Carbon, 45, 55-61.
[13] Andrews, R., Jacques, D., Rao, A.M., Derbyshire, F., Qian, D., Fan, X., Dickey, E.C. and Chen J. (1999) Continuous Production of Aligned Carbon Nanotubes: A Step Closer to Commercial Production. Chemical Physics Letters, 303, 467-474.
[14] Albert, G., Nasibulin, Moisala, A., Jiang, H. and Kauppinen, E.I. (2006) Carbon Nanotube Synthesis from Alcohols by a Novel Aerosol Method. Journal of Nanoparticle Research, 8, 465-475.
[15] Bell, M.S., Teo, K.B.K. and Milne, W.I. (2007) Factors Determining Properties of Multi-Walled Carbon Nanotubes/ Fibres Deposited by PECVD. Journal of Physics D: Applied Physics, 40, 2285-2292.
[16] Caughman, J.B.O., Baylor, L.R., Guillorn, M.A., Merkulov, V.I., Lowndes, D.H. and Allard, L.F. (2003) Growth of Vertically Aligned Carbon Nanofibers by Low-Pressure Inductively Coupled Plasma-Enhanced Chemical Vapor Deposition. Applied Physics Letters, 83, 1207.
[17] Lee, T.Y., Han, J.H., Choi, S.H., Yoo, J.B., Park, C.Y., Jung, T., Yu, S., Yi, W.K., Han, I.T. and Kim, J.M. (2003) Epitaxial Diamond on a Si/CaF2/Ir Substrate. Diamond and Related Materials, 12, 1335-1339.
[18] Nolan, P.E., Lynch, D.C. and Cutler, A.H. (1998) Carbon Deposition and Hydrocarbon Formation on Group VIII Metal Catalysts. The Journal of Physical Chemistry B, 102, 4165-4175.
[19] Chhowalla, M., Teo, K.B.K., Ducati, C., Rupesinghe, N.L., Amaratunga, G.A.J., Ferrari, A.C., Roy, D., Robertson, J. and Milne, W.I. (2001) Growth Process Conditions of Vertically Aligned Carbon Nanotubes Using Plasma Enhanced Chemical Vapor Deposition. Journal of Applied Physics, 90, 5308.
[20] Woo, Y.S., Jeon, D.Y., Han, I.T., Lee, N.S., Jung, J.E. and Kim, J.M. (2002) In Situ Diagnosis of Chemical Species for the Growth of Carbon Nanotubes in Microwave Plasma-Enhanced Chemical Vapor Deposition. Diamond and Related Materials, 11, 59-66.
[21] Lim, S.H., Yoon, H.S., Moon, J.H., Park, K.C. and Jang, J. (2006) Optical Emission Spectroscopy Study for Optimization of Carbon Nanotubes Growth by a Triode Plasma Chemical Vapor Deposition. Applied Physics Letters, 88, Article ID: 033114.
[22] Delzeit, L., McAninch, I., Cruden, B.A., Hash, D., Chen, B., Han, J. and Meyyappan, M. (2002) Growth of Multiwall Carbon Nanotubes in an Inductively Coupled Plasma Reactor. Journal of Applied Physics, 91, 6027.
[23] Meyyappan, M. (2009) A Review of Plasma Enhanced Chemical Vapour Deposition of Carbon Nanotubes. Journal of Physics D: Applied Physics, 42, Article ID: 213001.
[24] Muller, Ch., Leonhardt, A., Kutz, M., Büchner, B. and Reuther, H. (2009) Growth Aspects of Iron-Filled Carbon Nanotubes Obtained by Catalytic Chemical Vapor Deposition of Ferrocene. The Journal of Physical Chemistry C, 113, 2736-2740.
[25] Wolny, F., Muhl, T., Weissker, U., Lipert, K., Schumann, J., Leonhardt, A. and Buchner, B. (2010) Iron Filled Carbon Nanotubes as Novel Monopole Like Sensors for Quantitative Magnetic Force Microscopy. Nanotechnology, 21.
[26] Nasibulin, A.G., Brown, D.P., Queipo, P., Gonzalez, D., Jiang, H., Anisimov, A.S. and Kauppinen, E.I. (2006) Effect of CO2 and H2O on the Synthesis of Single-Walled CNTs. Physica Status Solidi (b), 243, 3087-3090.
[27] Nagaraju, N., Fonseca, A., Konya, Z. and Nagy, J.B. (2002) Alumina and Silica Supported Metal Catalysts for the Production of Carbon Nanotubes. Journal of Molecular Catalysis A: Chemical, 181, 57-62.
[28] Seo, J.W., Hernadi, K., Miko, C. and Forro, L. (2004) Behaviour of Transition Metals Catalysts over Laser-Treated Vanadium Support Surfaces in the Decomposition of Acetylene. Applied Catalysis A: General, 260, 87-91.
[29] Li, Y., Kim, W., Zhang, Y., Rolandi, M., Wang, D. and Dai, H. (2001) Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes. The Journal of Physical Chemistry B, 105, 11424-11431.
[30] Huang, S., Woodson, M., Smalley, R. and Liu, J. (2004) Growth Mechanism of Oriented Long Single Walled Carbon Nanotubes Using “Fast-Heating” Chemical Vapor Deposition Process. Nano Letters, 4, 1025-1028.
[31] Laude, T., Kuwahara, H. and Sato, K. (2007) FeCl2-CVD Production of Carbon Fibres with Graphene Layers Nearly Perpendicular to Axis. Chemical Physics Letters, 434, 78-81.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.