[1]
|
Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58. http://dx.doi.org/10.1038/354056a0
|
[2]
|
Harris, P.J. (1999) Carbon Nanotubes and Related Structures. Cambridge Univertsity, Cambridge.
|
[3]
|
Dresselhaus, M.S., Dresselhaus, G. and Saito, R. (1992) Carbon Fibers Based on C60 and Their Symmetry. Physical Review B, 45, 6234. http://dx.doi.org/10.1103/PhysRevB.45.6234
|
[4]
|
Mintmire, J.W., Dunlap, B.I. and White, C.T. (1992) Are Fullerene Tubules Metallic? Physical Review Letters, 68, 631. http://dx.doi.org/10.1103/PhysRevLett.68.631
|
[5]
|
Hamada, N., Sawada, S. and Oshiyama, A. (1992) New One-Dimensional Conductors: Graphitic Microtubules. Physical Review Letters, 68, 1579. http://dx.doi.org/10.1103/PhysRevLett.68.1579
|
[6]
|
Iijima, S. and Ichihashi, T. (1993) Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature, 363, 603-605. http://dx.doi.org/10.1038/363603a0
|
[7]
|
Ebbesen, T.W. and Ajayan, P.M. (1992) Large-Scale Synthesis of Carbon Nanotubes. Nature, 358, 220-222. http://dx.doi.org/10.1038/358220a0
|
[8]
|
Charlier, J.-C. and Iijima, S. (2001) Growth Mechanisms of Carbon Nanotubes. Topics in Applied Physics, 80, 55-81. http://dx.doi.org/10.1007/3-540-39947-X_4
|
[9]
|
Gómez, J.A., Marquez, A., Pérez, A. and Duarte-Moller, A. (2012) Simple Method to Synthesize Functionalized Carbon Nanotubes Employing Cobalt Nitrate and Acetone by Using Spray Pyrolysis Deposition Technique. Advances in Materials Science and Engineering, Article ID: 258673.
|
[10]
|
Krause, B., Ritschel, M., Taschner, Ch., Oswald, S., Gruner, W., Leonhardt, A. and Petschke, P. (2010) Comparison of Nanotubes Produced by Fixed Bed and Aerosol-CVD Methods and Their Electrical Percolation Behaviour in Melt Mixed Polyamide 6.6 Composites. Composites Science and Technology, 70, 151-160. http://dx.doi.org/10.1016/j.compscitech.2009.09.018
|
[11]
|
Mayne, M., Grobert, N., Terrones, M., Kamalakaran, R., Ruhle, M., Kroto, H.W. and Walton, D.R.M. (2001) Pyrolytic Production of Aligned Carbon Nanotubes from Homogeneously Dispersed Benzene-Based Aerosols. Chemical Physics Letters, 338, 101-107.
|
[12]
|
Barreiro, A., Kramberger, C., Rummeli, M.H., Gruneis, A., Grimma, D., Hampel, S., Gemming, T., Buechner, B., Bachtold, A. and Pichler, T. (2007) Control of the Single-Wall Carbon Nanotube Mean Diameter in Sulphur Promoted Aerosol-Assisted Chemical Vapour Deposition. Carbon, 45, 55-61. http://dx.doi.org/10.1016/j.carbon.2006.08.013
|
[13]
|
Andrews, R., Jacques, D., Rao, A.M., Derbyshire, F., Qian, D., Fan, X., Dickey, E.C. and Chen J. (1999) Continuous Production of Aligned Carbon Nanotubes: A Step Closer to Commercial Production. Chemical Physics Letters, 303, 467-474.
|
[14]
|
Albert, G., Nasibulin, Moisala, A., Jiang, H. and Kauppinen, E.I. (2006) Carbon Nanotube Synthesis from Alcohols by a Novel Aerosol Method. Journal of Nanoparticle Research, 8, 465-475.
|
[15]
|
Bell, M.S., Teo, K.B.K. and Milne, W.I. (2007) Factors Determining Properties of Multi-Walled Carbon Nanotubes/ Fibres Deposited by PECVD. Journal of Physics D: Applied Physics, 40, 2285-2292.
|
[16]
|
Caughman, J.B.O., Baylor, L.R., Guillorn, M.A., Merkulov, V.I., Lowndes, D.H. and Allard, L.F. (2003) Growth of Vertically Aligned Carbon Nanofibers by Low-Pressure Inductively Coupled Plasma-Enhanced Chemical Vapor Deposition. Applied Physics Letters, 83, 1207. http://dx.doi.org/10.1063/1.1597981
|
[17]
|
Lee, T.Y., Han, J.H., Choi, S.H., Yoo, J.B., Park, C.Y., Jung, T., Yu, S., Yi, W.K., Han, I.T. and Kim, J.M. (2003) Epitaxial Diamond on a Si/CaF2/Ir Substrate. Diamond and Related Materials, 12, 1335-1339. http://dx.doi.org/10.1016/S0925-9635(03)00083-9
|
[18]
|
Nolan, P.E., Lynch, D.C. and Cutler, A.H. (1998) Carbon Deposition and Hydrocarbon Formation on Group VIII Metal Catalysts. The Journal of Physical Chemistry B, 102, 4165-4175. http://dx.doi.org/10.1021/jp980996o
|
[19]
|
Chhowalla, M., Teo, K.B.K., Ducati, C., Rupesinghe, N.L., Amaratunga, G.A.J., Ferrari, A.C., Roy, D., Robertson, J. and Milne, W.I. (2001) Growth Process Conditions of Vertically Aligned Carbon Nanotubes Using Plasma Enhanced Chemical Vapor Deposition. Journal of Applied Physics, 90, 5308. http://dx.doi.org/10.1063/1.1410322
|
[20]
|
Woo, Y.S., Jeon, D.Y., Han, I.T., Lee, N.S., Jung, J.E. and Kim, J.M. (2002) In Situ Diagnosis of Chemical Species for the Growth of Carbon Nanotubes in Microwave Plasma-Enhanced Chemical Vapor Deposition. Diamond and Related Materials, 11, 59-66. http://dx.doi.org/10.1016/S0925-9635(01)00519-2
|
[21]
|
Lim, S.H., Yoon, H.S., Moon, J.H., Park, K.C. and Jang, J. (2006) Optical Emission Spectroscopy Study for Optimization of Carbon Nanotubes Growth by a Triode Plasma Chemical Vapor Deposition. Applied Physics Letters, 88, Article ID: 033114. http://dx.doi.org/10.1063/1.2166690
|
[22]
|
Delzeit, L., McAninch, I., Cruden, B.A., Hash, D., Chen, B., Han, J. and Meyyappan, M. (2002) Growth of Multiwall Carbon Nanotubes in an Inductively Coupled Plasma Reactor. Journal of Applied Physics, 91, 6027. http://dx.doi.org/10.1063/1.1465101
|
[23]
|
Meyyappan, M. (2009) A Review of Plasma Enhanced Chemical Vapour Deposition of Carbon Nanotubes. Journal of Physics D: Applied Physics, 42, Article ID: 213001.
|
[24]
|
Muller, Ch., Leonhardt, A., Kutz, M., Büchner, B. and Reuther, H. (2009) Growth Aspects of Iron-Filled Carbon Nanotubes Obtained by Catalytic Chemical Vapor Deposition of Ferrocene. The Journal of Physical Chemistry C, 113, 2736-2740. http://dx.doi.org/10.1021/jp8101207
|
[25]
|
Wolny, F., Muhl, T., Weissker, U., Lipert, K., Schumann, J., Leonhardt, A. and Buchner, B. (2010) Iron Filled Carbon Nanotubes as Novel Monopole Like Sensors for Quantitative Magnetic Force Microscopy. Nanotechnology, 21.
|
[26]
|
Nasibulin, A.G., Brown, D.P., Queipo, P., Gonzalez, D., Jiang, H., Anisimov, A.S. and Kauppinen, E.I. (2006) Effect of CO2 and H2O on the Synthesis of Single-Walled CNTs. Physica Status Solidi (b), 243, 3087-3090. http://dx.doi.org/10.1002/pssb.200669211
|
[27]
|
Nagaraju, N., Fonseca, A., Konya, Z. and Nagy, J.B. (2002) Alumina and Silica Supported Metal Catalysts for the Production of Carbon Nanotubes. Journal of Molecular Catalysis A: Chemical, 181, 57-62. http://dx.doi.org/10.1016/S1381-1169(01)00375-2
|
[28]
|
Seo, J.W., Hernadi, K., Miko, C. and Forro, L. (2004) Behaviour of Transition Metals Catalysts over Laser-Treated Vanadium Support Surfaces in the Decomposition of Acetylene. Applied Catalysis A: General, 260, 87-91. http://dx.doi.org/10.1016/j.apcata.2003.10.003
|
[29]
|
Li, Y., Kim, W., Zhang, Y., Rolandi, M., Wang, D. and Dai, H. (2001) Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes. The Journal of Physical Chemistry B, 105, 11424-11431. http://dx.doi.org/10.1021/jp012085b
|
[30]
|
Huang, S., Woodson, M., Smalley, R. and Liu, J. (2004) Growth Mechanism of Oriented Long Single Walled Carbon Nanotubes Using “Fast-Heating” Chemical Vapor Deposition Process. Nano Letters, 4, 1025-1028. http://dx.doi.org/10.1021/nl049691d
|
[31]
|
Laude, T., Kuwahara, H. and Sato, K. (2007) FeCl2-CVD Production of Carbon Fibres with Graphene Layers Nearly Perpendicular to Axis. Chemical Physics Letters, 434, 78-81. http://dx.doi.org/10.1016/j.cplett.2006.11.091
|