MOCVD of Molybdenum Sulphide Thin Film Via Single Solid Source Precursor Bis-(Morpholinodithioato-s,s’)-Mo


A single solid source precursor bis-(morpholinodithioato-s,s’)-Mo was prepared and molybdenum sulphide thin film was deposited on sodalime glass using Metal Organic Chemical Vapour Deposition (MOCVD) technique at deposition temperature of 420?C. The film was characterized using Rutherford Backscattering Spectroscopy (RBS), Ultraviolet-Visible Spectroscopy, Four point probe technique, Scanning Electron Mi-croscopy (SEM), X-ray Diffractometry (XRD) and Atomic Force Microscopy (AFM). A direct optical band gap of 1.77 eV was obtained from the analysis of the absorption spectrum. The sheet resistance was found to be of the order of 10P–5P ΩP–1P?cmP–1P. SEM micrographs of the films showed the layered structure of the film with an estimated grain size that is less than 2 µm while XRD indicates parallel orientation of the basal plane to the substrate surface.

Share and Cite:

B. Olofinjana, G. Egharevba, B. Taleatu, O. Akinwunmi and E. Ajayi, "MOCVD of Molybdenum Sulphide Thin Film Via Single Solid Source Precursor Bis-(Morpholinodithioato-s,s’)-Mo," Journal of Modern Physics, Vol. 2 No. 5, 2011, pp. 341-349. doi: 10.4236/jmp.2011.25042.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Regular, C. Ballif, J. H. Moser and F. Lévy, “Structural, Chemical and Electrical Characterization of Reactively Sputtered WSx Thin Films,” Thin Solid Films, Vol. 280, No. 1-2, 1996, pp. 67-75. doi:10.1016/0040-6090(95)08206-9
[2] P. D. Fleischauer, “Fundamental Aspect of the Electronic Structure Materials Properties and Lubrication Performance of Sputtered MoS2 Films,” Thin Solid Films, Vol. 154, No. 1-2, 1987, pp. 309-322. doi:10.1016/0040-6090(87)90375-0
[3] R. A. Wold, “Electronic Structure of MoSe2, MoS2 and WSe2. I. Band-Structure Calculation and Photoelectron Spectroscopy,” Physical Review B, Vol. 35, No. 12, 1987, pp. 6195-6202. doi:10.1103/PhysRevB.35.6195
[4] H. Lee, M. Kanai and C. Kawai, “Preparation of Transition Metal Chalcogenide Thin Films by Pulsed Laser Ablation,” Thin Solid Films, Vol. 227, No. 1, 1996, pp. 98-100. doi:10.1016/0040-6090(95)08022-8
[5] J. Pütz and M. A. Aegeter, “Spin Deposition of MoSx Thin Films,” Thin Solid Films, Vol. 351, No. 1-2, 1999, pp. 119-124. doi:10.1016/S0040-6090(99)00255-2
[6] R. S. Patil, “Electrosynthesis of the Molybdenum Disulphide Thin Films and Characterization,” Thin Solid Films, Vol. 340, No. 1-2, 1999, pp. 11-12. doi:10.1016/S0040-6090(98)01375-3
[7] V. Thanigaimani and M. A. Angadi, “Thickness Dependence of Temperature Coefficient of Resistance and Neel Temperature in MnTe Films,” Journal of Materials Science Letters, Vol. 12, No. 13, 1993, pp. 1052-1056. doi:10.1007/BF00420217
[8] P. Pramanik and S. Bhattacharya, “Chemical Synthesis of Nanosized Oxides,” Material Research Bulletin, Vol. 25, No. 1, 1990, pp. 15-23. doi:10.1016/0025-5408(90)90157-W
[9] A. Arucharry, “Photoelectrochemistry and Photovoltaics of Layered Semiconductors,” Kluwer Academic Pub- lisher, Dordrecht, 1992.
[10] P. K. Nair, J. Campos and M. T. S. Nair, “Optoelectronics Characteristics of Chemically Deposited Cadmium Sulphide Thin Films,” Semiconductor Science Technology, Vol. 3, No. 2, 1988, pp. 134-145. doi:10.1088/0268-1242/3/2/010
[11] E. A. Ponomarev, M. Neumann-Spallart, G. Hodes and C. Lévy-Clement, “Electrochemical Deposition of MoS2 Thin Films by Reduction of Tetrathiomolybdate,” Thin Solid Films, Vol. 280, No. 1-2, 1996, pp. 86-89. doi:10.1016/0040-6090(95)08204-2
[12] I. Jamieson and G. Jakovidis, “Thin Film Texture of Layered Molybdenum Disulphide for Photovoltaic Cells,” Optoelectronic and Microelectronic Materials and Devices, Vol. 8, No. 8, 2004, pp. 117-120. doi:10.1109/COMMAD.2004.1577506
[13] E. A. Ponomarev, R. Tenne, A. Katty and C. Lévy-Clement, “High Oriented Photoactive Polycrystalline MoS2 Layers Obtained by Van der Waals Rheotaxy Technique from Elecrochemically Deposited Thin Films,” Solar Energy Materials and Solar Cells, Vol. 52, No. 1, 1998, pp. 125-133. doi:10.1016/S0927-0248(97)00277-8
[14] Y. B. Li, Y. Bando, D. Goldberg and K. Kurashima, “Field Emission from MoO3 Nanobelts,” Applied Physics Letter, Vol. 81, No. 26, 2002, pp. 5048-5050. doi:10.1063/1.1532104
[15] Y. B. Li, Y. Bando and D. Goldberg, “MoS2 Nanoflowers and Their Field-Emission Properties,” Applied Physics Letters, Vol. 82, No. 12, 2003, pp. 1962-1964. doi:10.1063/1.1563307
[16] T. Caillat, J. P. Fleurial and G. J. Synder, “Potential of Chevrel Phases to Thermoelectric Applications,” Solid State Sciences, Vol. 1, No. 7-8, 1999, pp. 535-544.
[17] C. Song, “An Overview of New Desulfurization for Ultra-Clean Gasoline, Diesel Fuel and Jet Fuel,” Catalyst Today, Vol. 86, No. 1-4, 2003, pp. 211-263. doi:10.1016/S0920-5861(03)00412-7
[18] P. R. Somani and S. Radhakrishnan, “Electrochromic Materials and Devices: Present and Future,” Materials Chemistry and Physics, Vol. 77, No. 1, 2003, pp. 117-133. doi:10.1016/S0254-0584(01)00575-2
[19] P. M. Monk, T. Ali and R. D. Patridge, “The Effect of Doping Electrochromic Molybdenum Oxide with Other Metal Oxide,” Solid State Ionics, Vol. 80, No. 1-2, 1995, pp. 75-85. doi:10.1016/0167-2738(95)00130-X
[20] N. Imanishi, K. Kanamura and Z. Takahara, “Synthesis of MoS2 Thin Film by Vapour Deposition Method and Characteristics as a Cathode of the Lithium Secondary Battery,” Journal of Electrochemical Society, Vol. 139, No. 8, 1998, pp. 2082-2087. doi:10.1149/1.2221182
[21] G. Meunier, R. Dormoy, and A. Levasseur, “New Positive-Electrode Materials for Lithium Thin Film Secondary Batteries,” Material Science and Engineering B, Vol. 3, No. 1-2, 1989, pp. 19-23. doi:10.1016/0921-5107(89)90173-6
[22] S. D. Jones and J. R. Akridges, “Development and Performance of a Rechargeable Thin Film Solid State Microbattery,” Journal Power Sources, Vol. 54, 1994, pp. 63-67.
[23] R. Dominko, M. Gaberscek, D. Arcon, A. Mrzel, M. Remslar, D. Mihailovic, S. Pejovnik and J. Jamik, “Electrochemical Preparation and Characterization of LizMoS2-x Nanomaterials,” Electrochimica Acta, Vol. 48, No. 20-22, 2003, pp. 3079-3084. doi:10.1016/S0013-4686(03)00384-0
[24] J. Pütz and M. A. Aegeter, “MoSx Thin Films by Thermolysis of a Single Source Precursor,” Journal of Sol-Gel Science and Technology, Vol. 19, No. 1-3, 2000, pp. 821-824.
[25] J. Moser, J. H. Liao and F. Levy, “Texture Characterization of Sputtered MoS2 Thin Films by Cross Section TEM Analysis,” Journal of Physics D: Applied Physics, Vol. 23, No. 5, 1990, pp. 624-626. doi:10.1088/0022-3727/23/5/026
[26] J. K. G. Panitz, L. E. Pope, J. E. Lyons and D. J. Staley, “The Tribological Properties of MoS2 Coatings in Vacuum Low Relative Humidity and High Relative Humidity Environments,” Journal of Vacuum Science & Technology A, Vol. 6, No. 3, 1988, pp. 1166-1170. doi:10.1116/1.575669
[27] S. Mikhailov, A. Savan, E. Pflüger, L. Knoblauch, R. Hauert, M. Simmonds and H. Van Swygehoven, “Morphology and Tribological Properties of Metal (Oxide)-MoS2 Nanostructural Multilayer,” Surface and Coating Technology, Vol. 105, No. 1, 1998, pp. 175-183. doi:10.1016/S0257-8972(98)00483-6
[28] N. M. Renevier, V. C. Fox, D. G. Teer and J. Hamsphire, “Coating Characteristics and Tribological Properties of Sputtered Deposited MoS2/Metal Composite Coatings Deposited by Closed Field Unbalanced Magnetron Sputter Ion Plating,” Surface and Coatings Technology, Vol. 127, No. 1, 2000, pp. 24-37.
[29] I. Efeoglu, “Deposition and Characterization of a Multilayered-Composite Solid Lubricant Coating,” Reviews on Advanced Materials Science, Vol. 15, 2007, pp. 87-94.
[30] S. P. Kaye, J. S. Kheyrandish, J. S. Colligon and E. W. Roberts, “Ion Beam Modification of the Physical Properties of MoSx Films,” Thin Solid Films, Vol. 228, No. 1-2, 1993, pp. 252-256. doi:10.1016/0040-6090(93)90610-2
[31] D. Y. Wang, C. L. Chang, Z. Y. Chen and W. Y. Ho, “Microstructure and Tribological Characterization of MoS2-Ti Composite Solid Lubricating Films,” Surface and Coatings Technology, Vol. 120-121, 1999, pp. 629-635. doi:10.1016/S0257-8972(99)00431-4
[32] S. C. Ray, “Structure and Optical Properties of Molybdenum Disulphide (MoS2) Thin Film Deposited by the Dip Technique,” Journal of Material Science Letters, Vol. 19, No. 9, 2000, pp. 803-804. doi:10.1023/A:1006737326527
[33] H. Lee, M. Kanai and C. Kawai, “Preparation of Transition Metal Chalcogenide Thin Films by Pulsed Laser Ablation,” Thin Solid Films, Vol. 277, No. 1, 1996, pp. 98-100. doi:10.1016/0040-6090(95)08022-8
[34] J. J. Hu, J. E. Bultman and J. S. Zabinski, “Microstructure and Lubrication Mechanism of Multilayered MoS2/Sb2O3 Thin Films,” Tribology Letters, Vol. 21, No. 2, 2006, pp. 169-174. doi:10.1007/s11249-006-9035-6
[35] J. J. Hu, J. S. Zabinski, J. E. Bultman, J. H. Sanders and A. A. Voevodin, “Structural Characterization of Pulsed Laser Deposited Mo-Sx-WSey Composite Films of Tribological Interests,” Tribology Letters, Vol. 24, No. 2, 2006, pp. 127-135. doi:10.1007/s11249-006-9063-2
[36] H. M. Pathan and C. D. Lokhande, “Deposition of Metal Chalcogenide Thin Films by Successive Ionic Layer Adsorption and Reaction (SILAR) Method,” Bulletin of Material Science, Vol. 27, No. 2, 2004, pp. 85-111. doi:10.1007/BF02708491
[37] W. Hai-Dou, X. Bin-Shi, L. Jia-Jun and Z. Da-Ming, “Characterization and Anti-Friction on the Solid Lubrication of MoS2 Films Prepared by Chemical Reaction Technique,” Science and Technology of Advanced Materials, Vol. 6, No. 5, 2005, pp. 535-539. doi:10.1016/j.stam.2005.03.012
[38] I. Endler, A. Leonhardt, U. Kong, H. Van der Berg, W. Pitschke and V. Sottke, “Chemical Vapour Deposition of MoS2 Coatings Using the Precursor MoCl5 and H2S,” Surface and Coatings Technology, Vol. 120-121, 1999, pp. 482-488. doi:10.1016/S0257-8972(99)00413-2
[39] J. Cheon, J. E. Gozum and G.S. Girolami, “Chemical Vapour Deposition of MoS2 and TiS2 Films from the Metal-Organic Precursors Mo(S-t-Bu)4 and Ti(S-t-Bu)4,” Chemical Materials, Vol. 9, No. 8, 1997, pp. 1847-1853. doi:10.1021/cm970138p
[40] D. M. Schleich, H. S. Chang, Y. L. Barberio and K. L. Hanson, “MoS3 Thin Film Cathodes Prepared by Chemical Vapour Deposition,” Journal of Electrochemical Society, Vol. 136, No. 11, 1989, pp. 3274-3278. doi:10.1149/1.2096437
[41] O. B. Ajayi, O. K. Osuntola, I. A. O. Ojo and C. Jeynes, “Preparation and Characterization of MOCVD Thin Films of Cadmium Sulphide,” Thin Solid Films, Vol. 248, No. 1, 1994, pp. 57-63. doi:10.1016/0040-6090(94)90211-9
[42] A. V. Adedeji, M. A. Eleruja, I. A. O. Ojo, A. Djebah, A. O. Osasona, J. O. Olowolafe, J. B. Aladekomo and E. O. B. Ajayi, “Preparation and Optical Characterization of MOCVD ZnCdInS Thin Films,” Optical Materials, Vol. 14, No. 4, 2000, pp. 345-349. doi:10.1016/S0925-3467(99)00118-4
[43] M. A. Eleruja, A. V. Adedeji, I. A. O. Ojo, A. Djebah, O. Osasona, J. B. Aladekomo and E. O. B. Ajayi, “Optical Characterization of Pyrolytically Deposited ZnxCd1-xS Thin Films,” Optical Materials, Vol. 10, No. 4, 1998, pp. 257-263. doi:10.1016/S0925-3467(97)00178-X
[44] O. B. Ajayi, “Electrical and Optical Properties of Pyrolytically Deposited Indium Oxide,” M.Sc. Thesis, University of Illinois, Urbana, USA, 1970.
[45] B. Olofinjana, G. O. Egharevba, M. A. Eleruja, C. Jeynes, A. V. Adedeji, O. O. Akinwunmi, B. A. Taleatu, C. U. Mordi and E. O. B. Ajayi, “Synthesis and Some Properties of Metal Organic Chemical Vapour Deposited Molybdenum Oxysulphide Thin Films,” Journal of Material Science Technology, Vol. 26, No. 6, 2010, pp. 552-557. doi:10.1016/S1005-0302(10)60084-9
[46] A. Levasseur, E. Schmidt, G. Meunier, D. Gonbeau, L. Benoist and G. Pfister-Guillouzo, “New Amorphous Molybdenum Oxysulphide Thin Films: Their Characterization and Their Electrochemical Properties,” Journal of Power Sources, Vol. 54, No. 2, 1995, pp. 352-355. doi:10.1016/0378-7753(94)02100-H
[47] E. Schmidt, C. Sourisseau, G. Meunier and A. Levasseur, “Amorphous Molybdenum Oxysulphide Thin Films and their Physical Characterization,” Thin Solid Films, Vol. 260, No. 1, 1995, pp. 21-25. doi:10.1016/0040-6090(94)06463-6
[48] D. K. Schroder, “Semiconductor Material and Device Characterizations,” Willey-Interscience Publication, Arizona, 1998.
[49] D. N. Dunn, L. E. Seitzman and I. L. Signer, “The Origin of an Anomalous, Low 2θ Peak in X-ray Diffraction Spectra of MoS2 Films Grown by Ion Beam Assisted Deposition,” Journal of Materials Research, Vol. 12, No. 5, 1997, pp. 1191-1194. doi:10.1557/JMR.1997.0167

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.