Share This Article:

Non-stationary drivers of polar sea ice area

Abstract Full-Text HTML Download Download as PDF (Size:1490KB) PP. 351-358
DOI: 10.4236/ns.2011.35047    4,214 Downloads   8,111 Views   Citations

ABSTRACT

From 2002 through 2008 the secular rate of de-creasing sea ice area in the northern hemisphere accelerated by a factor of 18, whereas the secular rate of increasing sea ice area in the southern hemisphere accelerated by a factor of 16, relative to the rates from 1978 through 2007. These were derived from the daily sea ice area retrieved from the Scanning Multi-channel Microwave Radiometer – Special Sensor Microwave/Imager and the Advanced Microwave Scan- ning Radiometer for the Earth Observation Sys- tem. The “annual” cycle of northern and southern sea ice areas, the number of days between maxima and minima is 372.4, on average, a frequency modulation, with a recurrence interval of 61.7 years. Significant spectral power occurs at the quasi-4-day through 120-day frequencies. The frequency content and modulation of the daily time series’ are consistent inter-monthly to inter-seasonal frequencies of solar irradiance, atmospheric-oceanic Rossby waves, length-of- day, and polar motion. This suggests conserva-tion of angular momentum of the atmosphere – sea-ice – ocean system. The near 60-year modu- lation and analysis of the detrended daily time series of the Arctic and Antarctic sea ice areas suggest the accelerations shown by the secular trends are relatively short-lived and reversible within an interval of one-quarter (15-years) to one-half (30-years) of the modulation period.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Muskett, R. (2011) Non-stationary drivers of polar sea ice area. Natural Science, 3, 351-358. doi: 10.4236/ns.2011.35047.

References

[1] Aagaard, K. and Carmack, E.C. (1989) The role of sea ice and other fresh water in the Arctic circulation. Journal of Geophysical Research, 94, 14485-14498. doi:10.1029/JC094iC10p14485
[2] Washington, W.M. (1992) Climate-model responses to increased CO2 and other greenhouse gases. In: Trenberth, K.E. Ed., Climate System Modeling, Cambridge University Press, Cambridge, 643-666.
[3] Curry, J.A. and Schramm, J.L. (1995) Sea ice-climate feedback mechanism. Journal of Climate, 8, 240-247. doi:10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
[4] Lemke, P., Harder, M. and Helmer, M. (2000) The response of Arctic sea ice to global change. Climatic Change, 46, 277-287. doi:10.1023/A:1005695109752
[5] Gorodetskaya, I.V., Cane, M.A., Tremblay, L.-B. and Kaplan, A. (2006) The effects of sea-ice and land-snow concentrations on planetary albedo from the earth radiation budget experiment. Atmosphere-Ocean, 44, 195-205. doi:10.3137/ao.440206
[6] Cavalieri, D.C., Gloersen, P., Parkinson, C.L., Comiso, J.C. and Zwally, H.J. (1997) Observed hemispheric asym- metry in global sea ice changes. Science, 278, 1104-1106. doi:10.1126/science.278.5340.1104
[7] Cavalieri, D.J., Parkinson, C.L., Gloersen, P., Comiso, J.C. and Zwally, H.J. (1999) Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. Journal of Geophysical Research, 104, 15803-15814. doi:10.1029/1999JC900081
[8] Zwally, H.J., Comiso, J.C., Parkinson, C.L., Cavalieri, D.J. and Gloersen, P. (2002) Variability of Antarctic sea ice 1979-1998. Journal of Geophysical Research, 107, 1-9. doi:10.1029/2000JC000733
[9] Cavalieri, D.J., Parkinson, C.L. and Vinnikov, K.Y. (2003) 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophysical Research Letters, 30, 1-4. doi:10.1029/2003GL018031
[10] Cavalieri, D.J. and Parkinson, C.L. (2008) Antarctic sea ice variability and trends, 1979-2006. Journal of Geophysical Research, 113, Article ID C07004, 1-19.
[11] Spreen, G., Kaleschke, L. and Heygster, G. (2008) Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research, 113, Article ID C02S03, 1-14.
[12] Zwally, H.J., Comiso, J.C., Parkinson, C.L., Campbell, W.J., Carsey, F.D. and Gloersen, P. (1983) Variability of Antarctic sea ice and changes in carbon dioxide. Science, 220, 1005-1012. doi:10.1126/science.220.4601.1005
[13] Comiso, J.C., Parkinson, C.L., Gersten, R. and Stock, L. (2008) Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters, 35, Article ID L01703, 1-6.
[14] Overland, J., Turner, J., Francis, J., Gillett, N., Marshall, G. and Tjernstrom M. (2008) The Arctic and Antarctic: Two faces of climate change. Eos Transactions American Geophysical Union, 89, 177-179. doi:10.1029/2008EO190001
[15] Sullivan, R., Timmermann, A. and White, H. (2001) Dangers of data mining: The case of calendar effects in stock returns. Journal of Econometrics, 105, 249-286. doi:10.1016/S0304-4076(01)00077-X
[16] Cerveny, R.S., Svoma, B.M., Balling, R.C. Jr. and Vose, R.S. (2008) Gregorian calendar bias in monthly temperature databases. Geophysical Research Letters, 35, Article ID L19706, 1-4.
[17] Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flan nery, B.P. (2007) Numerical recipes: The art of scientific computing. 3rd Edition, Cambridge University Press, Cambridge.
[18] Kukla, G. and Gavin, J. (1981) Summer sea ice and carbon dioxide. Science, 214, 497-503. doi:10.1126/science.214.4520.497
[19] Amemiya, T. and Wu, R.Y. (1972) The effect of aggregation on prediction in the autoregressive model. Journal of the American Statistical Association, 67, 628-632. doi:10.2307/2284454
[20] Wei, W.W.S. (1979) Some consequences of temporal aggregation in seasonal time series models. In: Zellner, A. Ed., Seasonal Analysis of Economic Time Series, National Bureau of Economic Research, Cambridge, 433-448.
[21] Box, G.E.P. and Jenkins, G.M. (1975) Time series analysis: Forecasting and control. Revised Edition, Holden- Day, San Francisco.
[22] Jenkins, G.M. and Watts, D.G. (1969) Spectral analysis and its applications. Emerson-Adams Press, Inc., Boca Raton.
[23] Bevington, B.R. and Robinson, D.K. (1992) Data reduction and error analysis for the physical sciences, 2nd Edition, McGraw-Hill, Inc., New York.
[24] Ahlquist, J.E. (1982) Normal-mode global Rossby waves: Theory and observations. Journal of the Atmospheric Sciences, 39, 193-202. doi:10.1175/1520-0469(1982)039<0193:NMGRWT>2.0.CO;2
[25] Ahlquist, J.E. (1985) Climatology of normal-mode Rossby waves. Journal of the Atmospheric Sciences, 42, 2059-2068. doi:10.1175/1520-0469(1985)042<2059:CONMRW>2.0.CO;2
[26] Duvall, T.L. Jr., Jones, H.P. and Harvey, J.W. (1983) Solar oscillations with 13-day period. Nature, 304, 517- 518. doi:10.1038/304517a0
[27] Pap, J., Tobiska, W.K. and Bouwer, S.D. (1990) Periodicities of solar irradiance and solar activities, I. Solar Physics, 129, 165-189. doi:10.1007/BF00154372
[28] Djurovic, D. and Paquet, P. (1991) Variations common to the interplanetary magnetic field, the zonal atmospheric circulation and the earth’s rotation. Quarterly Journal of the Royal Meteorological Society, 117, 571-586. doi:10.1002/qj.49711749908
[29] Bouwer, S.D. (1992) Periodicities of solar irradiance and solar activity indices, II. Solar Physics, 142, 365-389. doi:10.1007/BF00151460
[30] Zhou, S., Rottman, J. and Miller, A.J. (1997) Stratospheric ozone response to short-and intermediate-term variations of solar UV flux. Journal of Geophysical Research, 102, 9003-9011. doi:10.1029/96JD03383
[31] Nikonova, M.V., Klochek, N.V. and Palamarchuk, L.E. (1998) Quasi-10-day and 4-day periodicities in solar irradiance. In: F.L. Deubner, et al. Eds., New Eyes to See Inside the Sun and Stars, International Astronomical Union, Kyoto, 119-120.
[32] Renwick, J.A. and Revell, M.J. (1999) Blocking over the South Pacific and Rossby wave propagation. Monthly Weather Review, 127, 2233-2247. doi:10.1175/1520-0493(1999)127<2233:BOTSPA>2.0.CO;2
[33] Baldwin, M.P. and Dunkerton, T.J. (2001) Stratospheric harbingers of anomalous weather regimes. Science, 294, 581-584. doi:10.1126/science.1063315
[34] Cravatte, S., Boulanger, J.-P. and Picaut J. (2004) Reflection of intraseasonal equatorial Rossby waves at the western boundary of the Pacific Ocean. Geophysical Research Letters, 31, Article ID L10301, 1-4.
[35] Haldoupis, C., Pancheva, D. and Mitchell, N.J. (2004) A study of tidal and planetary wave periodicities present in midlatitude sporadic E layers. Journal of Geophysical Research, 109, Article ID A02302, 1-12.
[36] Geller, M.A. (2006) Discussion of the solar uv/planetary wave mechanism. Space Science Reviews, 125, 237-246. doi:10.1007/s11214-006-9060-7
[37] Soon, W.W.-H. (2005) Variable solar irradiance as a plausible agent for multidecadal variations in the Arctic-wide surface air temperature record of the past 130 years. Geophysical Research Letters, 32, Article ID L16712, 1-5.
[38] Mazzarella, A. (2007) The 60-year solar modulation of global air temperature: The Earth’s rotation and atmospheric circulation connection. Theoretical and Applied Climatology, 88, 193-199. doi:10.1007/s00704-005-0219-z
[39] Barnes, R.T.H., Hide, R., White, A.A. and Wilson, C.A. (1983) Atmospheric angular momentum fluctuations, length-of-day changes and polar motion. Proceedings of the Royal Society A, 387, 31-73. doi:10.1098/rspa.1983.0050
[40] Ponte, R.M. (2002) Rapid ocean signals in polar motion and length of day. Geophysical Research Letters, 29, Article ID 151711, 1-4.
[41] Hibler, W.D. and Flato, G.M. (1992) Sea ice models. In: Trenberth K.E. Ed., Climate System Modeling, Cambridge University Press, Cambridge, 413-435.
[42] Cavalieri, D.J. and H?kkinen, S. (2001) Arctic climate and atmospheric planetary waves. Geophysical Research Letters, 28, 791-794. doi:10.1029/2000GL011855

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.