Share This Article:

Mineralogical Horizon (A) Evaluation of a Toposequence of Soils Derived from Basalt by Thermal Analysis

Abstract Full-Text HTML XML Download Download as PDF (Size:954KB) PP. 374-382
DOI: 10.4236/jmmce.2014.25042    2,642 Downloads   3,048 Views  

ABSTRACT

Thermogravimetry (TG) is a technique where the mass change of a substance is evaluated in function of temperature or time at a constant temperature while submitted to a controlled program in a specific environment. The minerals obtained from a clay fraction are highly susceptible to significant changes in composition as a response to thermal processes in function of temperature or dynamic as a function of time at a constant temperature. Thermogravimetric curves (TG) show mass changes preferentially during the heating processes. The DTG curve derived from the TG curve, shows changes in the inclination that are not exposed in the TG curve. DTG curve thus can show higher values of mass loss which are associated to an elevated degree of weathering for those reactions which involve mass changes, such as desorption, dehydration and reactions of dehydroxilation, observed in clay fraction without iron oxide-hydroxide, indicating kaolinite as a dominant mineral, with higher value 70.97% of the fraction to soil class LVdf.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Peternele, W. and da Costa, A. (2014) Mineralogical Horizon (A) Evaluation of a Toposequence of Soils Derived from Basalt by Thermal Analysis. Journal of Minerals and Materials Characterization and Engineering, 2, 374-382. doi: 10.4236/jmmce.2014.25042.

References

[1] Singh, R., Singh, P.K. and Singh, G. (2007) Evaluation of Land Degradation Due to Coal Mining—A Vibrant Issue. 1st International Conference on MSECCMI, New Delli, 129-133.
[2] Ranno, S.K., Silva, L.S., Gatiboni, L.C. and Rhoden, A.C. (2007) Capacidade de adsorção de fósforo em solos de várzea do Estado do Rio Grande do Sul. Revista Brasileira de Ciencia do Solo, 31, 21-28. http://dx.doi.org/10.1590/S0100-06832007000100003
[3] Silva Neto, L.F., Inda, A.V., Bayer, D.P.D. and Tonin, A.T. (2008) óxidos de ferro em Latossolos tropicais e subtropicais brasileiros em plantio direto. Revista Brasileira de Ciencia do Solo, 32, 1873-1881. http://dx.doi.org/10.1590/S0100-06832008000500008
[4] Fitzpatrick, R.W. (2009) Soil: Forensic Analysis. In: Jamieson, A. and Moenssens, A., Eds., Wiley Encyclopedia of Forensic Science, John Wiley & Sons, Ltd., Chichester, 2377-2388.
http://dx.doi.org/10.1002/9780470061589.fsa096
[5] Cavalheiro, E.T.G., Ionashiro, M., Breviglieri, S.T., Marino, G. and Chierice, G.O. (1995) A influência de fatores experimentais nos resultados de análises termogravimétricas. Química Nova, 18, 305-308.
[6] Tan, K.H. and Hajek, B.F. (1977) Thermal Analysis of Soil. In: Dixon, J.B., Weed, S.B., Kittrick, J.A., Milford, M.H. and White, J.L., Eds., Minerals and Soil Environments, Madison, 865-884.
[7] Barros, N., Salgado, J., Vilanueva, M., Rodriguez-Anón, J., Proupin, J., Feijóo, S. and Martín-Pastor, M. (2010) Application of DSC-TG and NMR to Study the Soil Organic Matter. Journal of Thermal Analysis and Calorimetry, 104, 53-60. http://dx.doi.org/10.1007/s10973-010-1163-4
[8] Duguy, B. and Rovira, P. (2010) Differential Thermogravimetry and Differential Scanning Calorimetry of Soil Organic Matter in Mineral Horizons: Effect of Wildfires and Land Use. Organic Geochemistry, 41, 742-752. http://dx.doi.org/10.1016/j.orggeochem.2010.05.015
[9] Empresa Brasileira de Pesquisa Agropecuária—EMBRAPA (2006) Centro Nacional de Pesquisa de Solos. Sistema brasileiro de classificação de solos. 2nd Edition, Rio de Janeiro, 306.
[10] Empresa Brasileira de Pesquisa Agropecuária—EMBRAPA (1997) Manual de métodos de análise de solo. 2nd Edition, Rio de Janeiro, 212.
[11] Camargo, O.A., Moniz, A.C., Jorge, J.A. and Valadares, J.M.A.S. (2009) Métodos de análises química, mineralógica e física de solos do Instituto Agronômico de Campinas. Governo do Estado de São Paulo, Boletim No. 106, 77.
[12] Novais, R.F., Alvarez, V., Barros, N.F., Fontes, R.L.F., Cantatutti, R.B. and Neves, J.C.L. (2007) Fertilidade do Solo. Universidade Federal de Viçosa, Viçosa, 1017-1025.
[13] Empresa Brasileira de Pesquisa Agropecuária—EMBRAPA (1999) Sistema brasileiro de classificação de solos. Centro Nacional de Pesquisa de Solos, Rio de Janeiro, 412.
[14] Lavkulich, L.M. and Wiens, J.H. (1970) Comparison of Organic Matter Destruction by Hidrogen Peroxide and Sodium Hipochlorite and Its Effects on Selected Mineral Constituents. Proceedings of Soil Science Society of America, 34, 755-758. http://dx.doi.org/10.2136/sssaj1970.03615995003400050025x
[15] Dowdy, R.H. (1994) Preconcentration Techniques in Soil Mineralogical Analyses. In: Amonette, J.E. and Zelazny, L.W., Eds., Quantitative Methods in Soil Mineralogy, Madison, 236-262.
[16] Mehra, O.P. and Jackson, M.L. (1960) Iron Oxide Removal from Soils and Clay by a Dithionite-Citrate System Buffered with Sodium Bicarbonate. Clays Clay Minerals, 7, 317-327.
http://dx.doi.org/10.1346/CCMN.1958.0070122
[17] Coelho, M.R., Vidal-Torrado, P., Perez, X.L.O., Martins, V.M. and Vásquez, F.M. (2010) Fracionamento do alumínio por técnicas de dissoluções seletivas em espodossolos da planície costeira do Estado de São Paulo. Revista Brasileira de Ciencia do Solo, 34, 1081-1092. http://dx.doi.org/10.1590/S0100-06832010000400008
[18] Souza Junior, I.G., Saraiva Da Costa, A.C., Sambatti, J.A., Peternele, W.S., Tormena, C.A., Montes, C.R. and Clemente, C.A. (2007) Contribuição dos constituintes da fração argila de solos subtropicais à área superficial específica e a capacidade de troca catiônica. Revista Brasileira de Ciencia do Solo, 31, 1355-1365. http://dx.doi.org/10.1590/S0100-06832007000600014
[19] Desauziers, V., Castre, N. and Le Cloirec, P. (1997) Soprtion of Methylmercury by Clays and Mineral Oxides. Environmental Technology, 18, 1009-1018. http://dx.doi.org/10.1080/09593331808616620
[20] Pergher, S.B.C., Corna, A. and Fornés, V. (1999) Preparación y propriedades de uma arcilla montmorillonita pilareada com polihidroxicationes de aluminio. Quimica Nova, 22, 693-709.
http://dx.doi.org/10.1590/S0100-40421999000500013
[21] Costa, A.C.S., Gigham, J.M., Rhoton, F.E. and Traina, S.J. (1999) Quantification and Characterization of Maghemite in Soils Derived from Volcanic Rocks in Southern Brazil. Clays and Clay Minerals, 47, 466-473. http://dx.doi.org/10.1346/CCMN.1999.0470408
[22] Sarwenay, A. (2008) Clay Mineral Quantification Using Gravimetric Analysis. Dissertation for the Degree of Master of Science in Civil Engineering, The University of Texas at Arlington, Arlington, 84.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.