Ecological-Genetic Studies and Conservation of Endemic Quercus sideroxyla (Trel.) in Central Mexico


This study examines the distribution, ecology and genetic diversity of Quercus sideroxyla Humb. Bonpl, with an emphasis on its conservation on the Natural Protected Area of Sierra Fría in North Central Mexico. Twenty-nine locations were selected, and in each location, one plot of 1500 m2 was established. At every location, we obtained an abundance of Q. sideroxyla and a basal area for each individual tree, including geographical and climatological data. We used the Outlying Mean Index (OMI) to examine whether environmental conditions had a distributional effect on Q. sideroxyla populations and to obtain the static size population structure of the species. For the genetic analysis, we collected 18 adult individuals from each population, four polymorphic loci were used to estimate genetic diversity. Q. sideroxyla abundance was associated with narrow environmental conditions, especially when considering the topographical and meteorological environmental variables. The allelic richness value was 84 alleles (21 privatealleles), and the expected mean heterozygosity was 0.855 ± 0.009. The high vulnerability of the species to changes in the land use at the local scale and to global climatic changes increases the species’ susceptibility to local disappearance.

Share and Cite:

Alfonso-Corrado, C. , Clark-Tapia, R. , Monsalvo-Reyes, A. , Rosas-Osorio, C. , González-Adame, G. , Naranjo-Luna, F. , Venegas-Barrera, C. and Campos, J. (2014) Ecological-Genetic Studies and Conservation of Endemic Quercus sideroxyla (Trel.) in Central Mexico. Natural Resources, 5, 442-453. doi: 10.4236/nr.2014.59041.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Larsen, D.R. and Johnson, P.S. (1998) Linking the Ecology of Natural Oak Regeneration to Silviculture. Forest Ecology and Management, 106, 1-7.
[2] Valencia-Avalos, S. (2004) Diversidad del géneroQuercus (Fagaceae) en México. Revista de la Sociedad Botánica de México, 75, 33-53.
[3] Nixon, K.C. (1998) El género Quercusen México. In: Ramamoorthy, T.P., Bye, R., Lot, A. and Fa, J., Eds., Diversidad biológica de México, Instituto de Biología, Universidad Nacional Autónoma de México, México D.F., 435-447.
[4] Challenger, A. (1998) Utilización y conservación de los ecosistemas terrestres de México, Pasado, Presente y Futuro. CONABIO-UNAM-SIERRA MADRE, México, D.F.
[5] Alfonso-Corrado, C., Clark-Tapia, R. and Mendoza, A. (2007) Demography and Management of Two Clonal Oaks: Quercus eduardii and Q. potosina (Fagaceae) in Central Mexico. Forest Ecology and Management, 251, 129-141.
[6] Gómez-Mendoza, L. and Arriaga, L. (2007) Modeling the Effect of Climate Change on the Distribution of Oak and Pine Species of Mexico. Conservation Biology, 21, 1545-1555.
[7] Olvera-Vargas, M., Figueroa-Rangel, B.L. and Vazquez-Lopez, J.M. (2010) Is There Environmental Differentiation in the Quercus Forests of West-Central Mexico? Plant Ecology, 211, 321-335.
[8] Alfonso-Corrado, C., Esteban-Jiménez, R., Clark-Tapia, R., Pinero, D., Campos, J.E. and Mendoza, A. (2004) Clonal and Genetic Structure of Two Mexican Oaks: Quercus eduardii and Q. potosina (Fagaceae). Evolutionary Ecology, 18, 585-599.
[9] Rosas-Osorio, J.C., Alfonso-Corrado, C., Monsalvo-Reyes, A., Clark-Tapia, R., Lira-Saade, R. and Campos-Contreras, J. (2010) The Genetic Variability of Quercus grisea Liebm, in the Sierra Fría of Aguascalientes, México. International Oak Journal, 21, 64-72.
[10] Gorgonio-Ramírez, M. (2012) Variabilidad y estructuragenética de Quercus eduardii (Fagaceae) en Sierra Fría, Aguascalientes. B.Sc. Thesis, Universidad de la Sierra Juárez, Ixtlán de Juárez.
[11] Zavala-Chávez, F. (1990) Los encinos mexicanos: Un recurso desaprovechado. Ciencia y Desarrollo, 95, 43-51.
[12] Poulos, H.M., Goodale, U.M. and Berlyn, G.P. (2007) Drought Response of Two Mexican Oak Species, Quercus lacely and Q. sideroxyla (Fagaceae), in Relation to Elevational Position. American Journal of Botany, 94, 809-818.
[13] Vera, P., Sasa, M., Encabo, S.I., Barba, E., Belda, E.J. and Monrós, J.S. (2011) Land Use and Biodiversity Congruences at Local Scale: Applications to Conservation Strategies. Biodiversity and Conservation, 20, 1287-1317.
[14] Primack, R.B. (2012) A Primer of Conservation Biology. 5th Edition, Sinauer Associates, Sunderland, MA.
[15] de la Cerda, M. (1999) Encinos de Aguascalientes. Universidad Autónoma de Aguascalientes, Aguascalientes.
[16] Minnich, R., Sosa-Ramírez, J., Franco-Vizcaíno, E., Barry, W.J. and Siqueiros, M. (1994) Reconocimiento preliminar de la vegetación y de los impactos de lasactividades humanas en la Sierra Fría, Aguascalientes. Revista Investigación y Ciencia, 4, 23-29.
[17] Chapa-Bezanilla, D., Sosa-Ramírez, J. and de Alba-ávila, A. (2008) Estudio multitemporal de los bosques de Sierra Fría, Aguascalientes, México. Maderas y Bosques, 14, 37-51.
[18] Thioulouse, J., Chessel, D., Dolédec, S. and Olivier, J.M. (1997) ADE4: A Multivariate Analysis and Graphical Display Software. Statistics and Computer, 7, 75-83.
[19] ESRI (1999) ArcView GIS. Version 3.2, Environmental Systems Research Institute, Inc., Redlands.
[20] Kovach (1994) Oriana for Windows. Version 1.03, Kovach Computing System, Wales.
[21] Pruett, C. and Wiener, K. (2008) The Effects of Sample Size in Population Genetic Diversity Estimates in Song Sparrows Melospiza melodía. Journal of Avian Biology, 39, 252-256.
[22] Steinkellner, S., Fluch, H., Turetschek, E., Lexer, C., Streiff, R., Kremer, K., Burg, J. and Glossl, C. (1997) Identification and Characterization of (GA/CT)n—Microsatellite Loci from Quercus petraea. Plant Molecular Biology, 33, 1093-1096.
[23] Aldrich, R.P., Micher, C.H., Sun, W. and Romero-Severson, T. (2002) Microsatellite Marker for Northern Red Oak (Fagaceae: Quercusrubra). Molecular Ecology Notes, 2, 472-474.
[24] Peakall, R. and Smouse, P.E. (2012) GenALEx 6.5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research—An Update. Bioinformatics, 28, 2537-2539.
[25] Rousset, F. (2008) Genepop’007: A Complete Re-Implementation of the Genepop Software for Windows and Linux. Molecular Ecology Resources, 8, 103-106.
[26] Slatkin, M. and Excoffier, L. (1996) Testing for Linkage Disequilibrium in Genotypic Data Using the Expectation-Maximization Algorithm. Heredity, 76, 377-383.
[27] Van Oosterhout, C., Hutchinson, W.F., Wilss, D.P.M. and Shipley, P. (2004) Micro-Checker: Software for Identifying and Correcting Genotyping Error in Microsatellite Data. Molecular Ecology, 4, 535-538.
[28] Meirmans, P.G. and Van Tienderen, P.H. (2004) GENOTYPE and GENODIVE: Two Programs for the Analysis of Genetic Diversity of Asexual Organisms. Molecular Ecolology Notes, 4, 792-794.
[29] Excoffier, L., Smouse, P.E. and Quattro, J.M. (1992) Analysis of Molecular Variance Inferred from Metric Distance DNA Haplotypes-Applications of Human Mitochondrial-DNA Restriction DATA. Genetics, 131, 479-491.
[30] Crow, J.F. and Aoki, K. (1984) Group Selection for a Polygenic Behavioral Trait: Estimating the Degree of Population Subdivision. Proceedings of the National Academy of Sciences of the United States of America, 81, 6073-6077.
[31] álvarez-Moctezuma, J.G., Ochoa-Gaona, S., de Jong, B.H.J. and Soto-Pinto, M.L. (1999) Hábitat y distribución de cincoespecies de Quercus (Fagaceae) en la Meseta Central de Chiapas. Revista de Biología Tropical, 47, 351-358.
[32] Encina-Domínguez, J.A. and Villareal-Quintanilla, J.A. (2002) Distribución y aspectos ecológicos del género Quercus (Fagaceae) en el estado de Coahuila, México. Polibotánica, 13, 1-23.
[33] de Souza, I.F., Sousa, A.F., Pizo, M.A. and Ganade, G. (2010) Using Tree Population Size Structures to Assess the Impacts of Cattle Grazing and Eucalypts Plantations in Subtropical South America. Biodiversity and Conservation, 19, 1683-1698.
[34] Wadt, L.H.O., Kainer, K.A. and Gomes-Silva, D.A.P. (2005) Population Structure and Nut Yield of a Bertholletia excelsa Stand in Southwestern Amazonia. Forest Ecology and Management, 211, 371-384.
[35] Souza, A.F. (2007) Ecological Interpretation of Multiple Population Size Structures in Trees: The Case of Araucaria angustifolia in South America. Austral Ecology, 32, 524-533.
[36] Rao, P., Barik, S.K., Pandey, H.N. and Tripathi, R.S. (1990) Community Composition and Tree Population Structure in a Sub-Tropical Broad-Leaved Forest along a Disturbance Gradient. Vegetatio, 88, 151-162.
[37] Cuevas-Guzmán, R., García-Moya, E. and Vázquez-García, J.A. (2008) Estructura poblacional y relaciones ambientales del árbol tropical Nectandra rudis (Lauraceae), una especie rara en el occidente de México. Revista de Biología Tropical, 56, 247-256.
[38] Soto, A., Lorenzo, Z. and Gil, L. (2007) Differences in Fine-Scale Genetic Structure and Dispersal in Quercus ilex L. and Q. suber L.: Consequences for Regeneration of Mediterranean Open Woods. Heredity, 99, 601-607.
[39] Dostálek, J., Frantík, T. and Lukásová, M. (2011) Genetic Differences within Natural and Planted Stands of Quercus petraea. Central European Journal of Biology, 6, 597-605.
[40] Fernández-M, J. and Sork, V.L. (2007) Genetic Variation in Fragmented Forest Stands of the Andean Oak Quercus humboldtii Bonpl. (Fagaceae). Biotropica, 39, 72-78.
[41] Aldrich, P.R., Parker, G.R., Michler, C.H. and Romero-Severson, J. (2003) Whole-Tree Silvic Identifications and the Microsatellite Genetic Structure of a Red Oak Species Complex in an Indiana Old-Growth Forest. Canadian Journal of Forest Research, 33, 2228-2237.
[42] Penaloza-Ramírez, J.M., Gonzalez-Rodriguez, A., Mendoza-Cuenca, L., Caron, H., Kremer, A. and Oyama, K. (2010) Interspecific Gene Flow in a Multispecies Oak Hybrid Zone in the Sierra Tarahumara of Mexico. Annals of Botany, 105, 389-399.
[43] Weiser, E.L., Grueber, C.E. and Jamieson, I.G. (2013) Simulating Retention of Rare Alleles in Small Populations to Assess Management Options for Species with Different Life Histories. Conservation Biology, 27, 335-344.
[44] Molina-Garay, C. (2011) Diversidad genética y estructura poblacional de Quercus macdougallii, Encino endémico de Oaxaca, México. B.Sc. Thesis, Universidad Nacional Autónoma de México, México D.F.
[45] Pingarroni, A.A.M. (2011) Variabilidad y estructura genetic poblacional de Quercus mulleri (Fagaceae) encino endémico de la Sierra Sur de Oaxaca, México. B.Sc. Thesis, Universidad Nacional Autónoma de México, México D.F.
[46] Streiff, R., Ducousso, A., Lexer, C., Steinkellner, H., Gloessl, J. and Kremer, A. (1999) Pollen Dispersal Inferred from Paternity Analysis in a Mixed Oak Stand of Quercus robur L. and Q. petraea (Matt.) Liebl. Molecular Ecology, 8, 831-841.
[47] SEMARNAT—Secretaría de Medioambiente y Recursos Naturales (2010) Norma Oficial Mexicana NOM-059SEMARNAT-2010. Diario Oficial de la Federación (DOF).
[48] Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kizberger, T., Rigling, A., Breshears, D.D., Hogg, E.H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.H., Allard, G., Running, S.W., Semerci, A. and Cobb, N. (2010) A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. Forest Ecology and Management, 259, 660-684.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.