New Developments in the Mechanism of Drug Action and Toxicity of Conjugated Imines and Iminiums, including Related Alkaloids

Abstract

This review deals with mechanism and physiological activity of conjugated imine and iminium species, including those in the alkaloid category. An appreciable number can be found in the Merck Index. There is focus in mode of action on electron transfer (ET), reactive oxygen species (ROS), oxidative stress (OS) and reduction potential in the prior review. These aspects can be involved in both therapeutic action and toxicity. A unifying mechanistic approach involving ET-ROS-OS is applied to synthetic drugs and alkaloids in the imineiminium category in relation to both beneficial and adverse effects. Insight at the basic, molecular level can aid in practical pharmaceutical design.

Share and Cite:

Kovacic, P. and Somanathan, R. (2014) New Developments in the Mechanism of Drug Action and Toxicity of Conjugated Imines and Iminiums, including Related Alkaloids. Open Journal of Preventive Medicine, 4, 583-597. doi: 10.4236/ojpm.2014.47068.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Kovacic, P. and Somanathan, R. (2011) Novel, Unifying Mechanism for Aromatic Primary-Amines (Therapeutic, Carcinogens and Toxins). Medicinal Chemistry Communication, 2, 106-112.
[2] Kovacic, P. and Somanathan, R. (2010) Mechanism of Conjugated Imine and Iminium Species, including Marine Alkaloids; Electron Transfer, Reactive Oxygen Species, Therapeutics and Toxicity. Current Bioactive Compounds, 6, 46-59.
http://dx.doi.org/10.2174/157340710790711782
[3] Kovacic, P. and Becvar, L.E. (2000) Mode of Action of Anti-Infective Agents: Emphasis on Oxidative Stress and Electron Transfer. Current Pharmaceutical Design, 6, 143-167.
http://dx.doi.org/10.2174/1381612810006020143
[4] Kovacic, P. and Osuna, JA. (2000) Mechanisms of Anticancer Agents: Focus on Oxidative Stress and Electron Transfer. Current Pharmaceutical Design, 6, 277-309.
http://dx.doi.org/10.2174/1381612003401046
[5] Kovacic, P. and Jacintho, J.D. (2001) Mechanisms of Carcinogensis: Focus on Oxidative Stress and Electron Transfer. Current Medicinal Chemistry, 8, 773-796.
http://dx.doi.org/10.2174/0929867013373084
[6] Kovacic, P. and Jacintho, J.D. (2001) Reproductive Toxins: Pervasive Theme of Oxidative Stress and Electron Transfer. Current Medicinal Chemistry, 8, 863-892.
http://dx.doi.org/10.2174/0929867013372878
[7] Kovacic, P., Sacman, A. and Wu-Weis, M.N. (2002) Widespread Role of Oxidative Stress and Electron Transfer. Current Medicinal Chemistry, 9, 823-847.
http://dx.doi.org/10.2174/0929867024606803
[8] Poli, G., Cheeseman, K.H., Dianzani, M.U. and Slater, T.F. (1989) Free Radicals in the Pathogenesis of Liver Injury. Pergamon, New York, 1-330.
[9] Kovacic, P. and Thurn, L.A. (2005) Cardiovascular Toxins from the Perspective of Oxidative Stress and Electron Transfer. Current Vascular Pharmacology, 3, 107-117.
http://dx.doi.org/10.2174/1570161053586912
[10] Kovacic, P. and Somanathan, R. (2005) Neurotoxicity: The Broad Framework of Electron Transfer, Oxidative Stress and Protection by Antioxidants. Current Medicinal Chemistry, 5, 2601-2623.
http://dx.doi.org/10.2174/092986705774370646
[11] Kovacic, P., Pozos, R.S., Somanathan, R., Shangari, R. and O’Brien, P.J. (2005) Mechanism of Mitochondrial Uncouplers, Inhibitors, and Toxins: Focus on Electron Transfer, Free Radicals, and Structure-Activity Relationships. Current Medicinal Chemistry, 5, 2601-2623.
http://dx.doi.org/10.2174/092986705774370646
[12] Kovacic, P. and Cooksy, A.L. (2005) Unifying Mechanism for Toxicity and Addiction by Abused Drugs: Electron Transfer and Reactive Oxygen Species. Medical Hypotheses, 64, 366-367.
http://dx.doi.org/10.1016/j.mehy.2004.07.021
[13] Kovacic, P. and Somanathan, R. (2009) Pulmonary Toxicity and Environmental Contamination: Radicals, Electron Transfer, and Protection by Antioxidants. Reviews of Environmental Contamination and Toxicology, 201, 41-69.
[14] Kovacic, P. and Somanathan, R. (2008) Ototoxicity and Noise Trauma; Electron Transfer, Reactive Oxygen Species, Cell Signaling, Electrical Effects, and Protection by Antioxidants; Practical Medical Aspects. Medical Hypotheses, 70, 914-923.
http://dx.doi.org/10.1016/j.mehy.2007.06.045
[15] Halliwell, B. and Gutteridge, J.M.C. (1999) Free Radicals in Biology and Medicine. Oxford University Press, New York, 1-897.
[16] O’Neil, M.J. (2006) The Merck Index. 14th Edition, Whitehouse Station, Hunterdon County, 1-10197.
[17] Costa-Campos, L., Lara, D.R., Nunes, D.S. and Elisabetsky, E. (1998) Antipsychotic-Like Profile of Alstonine. Pharmacology Biochemistry and Behavior, 60, 133-141.
http://dx.doi.org/10.1016/S0091-3057(97)00594-7
[18] Li, X.L., Yao, J.Y., Zhou, Z.M., Shen, J.Y., Ru, H.S. and Liu, X.L. (2011) Activity of the Cheleythrine, a Quaternary Benzo[c]Phenanththridine Alkaloid from Chelidonium majus L. on Dactylogyrus intermedius. Parasitology Research, 109, 247-252.
http://dx.doi.org/10.1007/s00436-011-2320-9
[19] Smania, A., Marques, C.J.S., Smania, E.F.A., Zanetti, C.R., Carobrez, S.G., Tramonte, R. and Loguercio-Leite, C. (2003) Toxicity and Antiviral Activity of Cinnabarin Obtained from Pycocarpus sanguieus (Fr.) Murr. Phytotherapy Research, 17, 1069.
www.interscience.wiley.com
[20] Kong, W.J., Zhao, Y.L., Xiao, X.H., Li, Z.L., Jin, C. and Li, H.B. (2009) Investigation of the Anti-Fungal Activity of Coptisine on Candida albicans Growth by Microcalori, Etry Combines with Principal Component Analysis. Journal of Applied Microbiology, 107, 1072-1080.
http://dx.doi.org/10.1111/j.1365-2672.2009.04292.x
[21] Ro, J.S., Lee, S.S., Lee, K.S. and Lee, M.K. (2001) Inhibition of Type a Monamine Oxidase by Coptisine in Mouse Brain. Life Sciences, 70, 639-645.
http://dx.doi.org/10.1016/S0024-3205(01)01437-0
[22] Hiramoto, K., Kato, T. and Kikugawa, K. (1994) Mechanism of the DNA Breaking Activity of Mutagenic 5-Diazouracil. Mutation Research, 306, 153-163.
http://dx.doi.org/10.1016/0027-5107(94)90026-4
[23] Misra, R.N. and Misra, B. (1986) Genetic Toxicological Testing of Some Dyes by the Micronucleus Test. Mutation Research/Genetic Toxicology, 170, 75-78.
http://dx.doi.org/10.1016/0165-1218(86)90083-2
[24] Kim, J.-B., Lee, G.-S., Kim, Y.-B., Kim, S.-K. and Kim, Y.-H. (2004) In Vitro Antibacterial Activity of Echinomycin Abd a Novel Analogue, YK2000, against Vancomicina Resistant Enterococci. International Journal of Antimicrobial Agents, 24, 613-615.
http://dx.doi.org/10.1016/j.ijantimicag.2004.03.018
[25] Beljanski, M. and Beljanski, M.S. (1982) Selective Inhibition of in Vitro Synthesis of Cancer DNA by Alkaloids Beta-Carboline Class. Experimental Cell Biology, 50, 79-87.
[26] Broglia, M.F., Bertolotti, S.G. and Previtali, C.M. (2007) Proton and Electron Transfer in the Excited State Quenching of Phenosafranine by Aliphatic Amines. Photochemistry and Photobiology, 83, 535-541.
http://dx.doi.org/10.1562/2006-07-31-RA-989
[27] Tsai, S.F. and Lee, S.S. (2010) Characterization of Acetylcholinesterase Inhibitory Constituents from Annona glabra Assisted by HPLC Microfractionation. Journal of Natural Products, 73, 1632-1635.
http://dx.doi.org/10.1021/np100247r
[28] Souto, A.L., Tavares, J.F., da Silva, M.S., de Fátima Formiga Melo Diniz, M., de Athayde-Filho, P.F. and Filho, J.M.B. (2011) Anti-Inflammatory Activity of Alkaloids: An Update from 2000 to 2010. Molecules, 16, 8515-8534.
http://dx.doi.org/10.3390/molecules16108515
[29] Chan, S.T.S., Pearce, A.N., Page, M.J., Kaiser, M. and Copp, B.R. (2011) Antimalarial β-Carbolines from the New Zealand Ascidian Pseudodistoma opacum. Journal of Natural Products, 74, 1972-1979.
http://dx.doi.org/10.1021/np200509g
[30] Goietsenoven, G.V., Andolfi, A., Lallemand, B., Cimmino, A., Lamoral-Theys, D., Gras, T., Abou-Donia, A., Dubois, J., Lefranc, F., Mathieu, V., Kornienko, A., Kiss, R. and Evidente, A. (2010) Amaryllidaceae Alkaloids Belonging to Different Structural Subgroups Display Activity against Apoptosis-Resistant Cancer Cells. Journal of Natural Products, 73, 1223-1227.
http://dx.doi.org/10.1021/np9008255
[31] Roué, M., Domart-Coulon, I., Reskovsky, A., Djediat, C., Perez, T. and Bourguet-Kondracki, M.L. (2010) Cellular Localization of Clathridimine, an Antimicrobial 2-Aminoimidazole Alkaloid Produced by the Mediterranean Calcareous Spomge Clathrina clathrus. Journal of Natural Products, 73, 1277-1282.
http://dx.doi.org/10.1021/np100175x
[32] Boisse, T., Gautret, P., Rigo, B., Goossens, L., Hénichart, J.P. and Gavara, L. (2008) A New Synthesis of pyrrolo[3,2,b]quinolines by Tandem Electrocyclization-Oxidation Process. Tetrahedron, 64, 7266-7272.
http://dx.doi.org/10.1016/j.tet.2008.05.071
[33] Okanya, P.W., Mohr, K.I., Gerth, K., Jansen, R. and Müller, R. (2011) Marinoquinolines A-F, Pyrroloquinolines from Ohtaewangia Kribbensis (Bacteridetes). Journal of Natural Products, 74, 603-608.
http://dx.doi.org/10.1021/np100625a
[34] Reddy, P.V.N., Jensen, K.C., Mesecar, A.D., Fanwick, P.E. and Cushman, M. (2011) Design, Synthesis, and Biological Evaluation of Potent Quinoline and Pyrroloquinoline Ammosamide Analogues as Inhibitors of Quinone Reductase 2. Journal of Medicinal Chemistry, 55, 367-377.
http://dx.doi.org/10.1021/jm201251c
[35] Deslanders, S., Chassaing, S. and Delfourne, E. (2009) Marine Pyrrolocarbazoles and Analogues: Synthesis and Kinase Inhibition. Marine Drugs, 7, 754-786.
http://dx.doi.org/10.3390/md7040754
[36] Mansson, M., Gram, L. and Larsen, T.O. (2011) Production of Bioactive Secondary Metabolites by Marine Vibrinaceae. Marine Drugs, 9, 1440-1468.
http://dx.doi.org/10.3390/md9091440
[37] Soliev, A.B., Hosokawa, K. and Enomoto, K. (2011) Bioactive Pigments from Marine Bacteria: Applications and Physiological Roles. Evidence-Based Complementary and Alternative Medicine, 2011, Article ID: 670349.
http://dx.doi.org/10.1155/2011/670349
[38] Kondratyuk, T.P., Park, E.J., van Breeman, R.B., Asolkar, R.N., Murphy, B.T., Fenical, W. and Pezzuto, J.M. (2012) Novel Marine Phenazines as Potential Cancer Chemopreventive and Anti-Inflammatory Agents. Marine Drugs, 10, 451-464.
http://dx.doi.org/10.3390/md10020451
[39] Edwards, V., Benkendorff, K. and Young, F. (2012) Marine Compounds Selectively Induce Apoptosis in Female Reproductive Cancer Cells, but Not in Primary-Derived Human Reproductive Granulose Cells. Marine Drugs, 10, 64-83. http://dx.doi.org/10.3390/md10010064
[40] Kochanowska-Karamyan, A.J. and Hamann, M.T. (2010) Marine Indole Alkaloids: Potential New Drug Leads for the Control of Depression and Anxiety. Chemical Reviews, 110, 44989-4497.
http://dx.doi.org/10.1021/cr900211p
[41] Güven, K.C., Percot, A. and Sezik, E. (2010) Alkaloids in Marine Algae. Marine Drugs, 8, 269-284.
http://dx.doi.org/10.3390/md8020269
[42] Zendah, I., Riaz, N., Nasr, H., Frauendorf, H., Schüffler, A., Raies, A. and Laatsch, H. (2012) Chromophenazines from the Terrestrial Streptomyces sp. Ank 315. Journal of Natural Products, 75, 2-8.
http://dx.doi.org/10.1021/np100818d
[43] Wei, X., Bugni, T.S., Harper, M.K., Sandoval, I.T., Manos, E.J., Swift, J., Van Wagoner, R.M., Jones, D.A. and Ireland, C.M. (2010) Evaluation of Pyridoacridine Alkaloids in a Zebrafish Phentypis Assya. Marine Drugs, 8, 1769-1778.
http://dx.doi.org/10.3390/md8061769
[44] Ponder, J., Yoo, B.H., Abraham, A.D., Li, Q., Ashley, A.K., Amerin, C.L., Zhou, Q., Reid, B.G., Reigan, P., Hromas, R., Nickoloff, J.A. and LaBarbera, D.V. (2011) Neoamphimedine Circumvents Metnase-Enhanced DNA Topoisomerase Iiα Activity through ATP-Competitive Inhibition. Marine Drugs, 9, 2397-2408.
http://dx.doi.org/10.3390/md9112397
[45] Castro-Castillo, V., Rebolledo-Fuentes, M., Theoduloz, C. and Cassels, B.K. (2010) Synthesis of Lakshminine and Antiproliferative Testing of Related Oxoisoaporphines. Journal of Natural Products, 73, 1951-1953.
http://dx.doi.org/10.1021/np100370g
[46] Appleton, D.R., Pearce, A.N. and Copp, B.R. (2010) Anti-Tuberculosis Natural Products: Synthesis and Biological Evaluation of Pyridoacridine Alkaloids Related to Ascididemin. Tetrahedron, 66, 4977-4986.
http://dx.doi.org/10.1016/j.tet.2010.05.033
[47] Bontemps, N., Bry, D., Lòpez-Legentil, S., Simon-Levert, A., Long, C. and Banaigs, B. (2010) Structures and Antimicrobial Activities of Pyridoacridine Alkaloids Isolated from Different Chromotypes of the Ascidian Cystodytes dellechiajei. Journal of Natural Products, 73, 1044-1048.
http://dx.doi.org/10.1021/np900751k
[48] Menna, M., Fattorusso, E. and Imperatore, C. (2011) Alkaloids from Marine Ascidians. Molecules, 16, 8694-8732.
http://dx.doi.org/10.3390/molecules16108694
[49] Wang, W., Rayburn, E.R., Sadanandan, E.V., Chen, D., Nadkarni, D.H., Murugesan, S., Chen, D.Q. and Zhang, R.W. (2010) A Novel Synthetic Iminoquinone, BA-TPQ, as an Anti-Breast Cancer Agent: In Vitro and in Vivo Activity and Mechanism of Action. Breast Cancer Research and Treatment, 123, 321-331.
http://dx.doi.org/10.1007/s10549-009-0638-0
[50] Ezell, S.J., Li, H., Xu, H., Zhang, X., Gurpinar, E., Zhang, X., Rayburn, E.R., Sommers, C.I., Yang, X., Velu, S.E., Wang, W. and Wang, R.W. (2010) Preclinical Pharmacology of BA-TPQ, a Novel Synthetic Iminoquinone Anticancer Agent. Marine Drugs, 8, 2129-2141.
http://dx.doi.org/10.3390/md8072129
[51] Ralifo, P., Sanchez, L., Gassner, N.C., Tenney, K., Lokey, R.S., Holman, T.R., Valeriote, F.A. and Crews, P. (2007) Pyrroloacridine Alkaloids from Plakortis quasiamphiaste: Structures and Bioactivity. Journal of Natural Products, 70, 95-97.
http://dx.doi.org/10.1021/np060585w
[52] Gomes, P.B., Nett, M., Dahse, H.M. and Hertweck, C. (2010) Pitucamycin: Structural Merger of a Phenoxazinone with Epoxyquinone Antibiotic. Journal of Natural Products, 73, 1461-1464.
http://dx.doi.org/10.1021/np100344u

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.