Synthesis, Structural and Photophysical Properties of Gd2O3:Eu3+ Nanostructures Prepared by a Microwave Sintering Process


In this paper, we report the obtention of gadolinium oxide doped with europium (Gd2O3:Eu+3) by thermal decomposition of the Gd(OH)3:Eu3+ precursor prepared by the microwave assisted hydrothermal method. These systems were analyzed by thermalgravimetric analyses (TGA/DTA), X-ray diffraction (XRD), structural Rietveld refinement method, fourrier transmission infrared absorbance spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM) and photoluminescence (PL) measurement. XRD patterns, Rietveld refinement analysis and FT-IR confirmed that the Gd(OH)3:Eu3+ precursor crystallize in a hexagonal structure and space group P6/m, while the Gd2O3:Eu3+ powders annealed in range of 500°C and 700°C crystallized in a cubic structure with space group Ia-3. FE-SEM images showed that Gd(OH)3:Eu3+ precursor and Gd2O3:Eu3+ are composed by aggregated and polydispersed particles structured as nanorods-like morphology. The excitation spectra consisted of an intense broad band with a maximum at 263 nm and the Eu3+ ions can be excitated via matrix. The emission spectra presented the characteristics transitions of the Eu3+ ion, whose main emission, , is observed at 612 nm. The photophysical properties indicated that the microwave sintering treatment favored the Eu3+ ions connected to the O-Gd linkages in the Gd2O3 matrix. Also, the emission in the Gd2O3:Eu3+ comes from the energy transfered from the Gd-O linkages to the clusters in the crystalline structure.

Share and Cite:

Moura, A. , Oliveira, L. , Nogueira, I. , Pereira, P. , Li, M. , Longo, E. , Varela, J. and Rosa, I. (2014) Synthesis, Structural and Photophysical Properties of Gd2O3:Eu3+ Nanostructures Prepared by a Microwave Sintering Process. Advances in Chemical Engineering and Science, 4, 374-388. doi: 10.4236/aces.2014.43041.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Iijima, S. (1991) Synthesis of Carbon Nanotubes. Nature, 354, 56-58.
[2] Ajayan, P.M. (1999) Nanotubes from Carbon. Chemical Reviews, 99, 1787-1800.
[3] Hu, J.T., Odom, T.W. and Lieber, C.M. (1999) Chemistry and Physics in one Dimension: Synthesis and Properties of Nanowires and Nanotubes. Accounts of Chemical Research, 32, 435-445.
[4] Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F. and Yan, H.Q. (2003) One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials, 15, 353-389.
[5] Rao, C.N.R., Deepak, F.L., Gundiah, G. and Govindaraj, A. (2003) Inorganic Nanowires. Progress in Solid State Chemistry, 31, 5-147.
[6] Huang, M.H., Mao, S., Feick, H., Yan, H.Q., Wu, Y.Y., Kind, H., Weber, E., Russo, R., Yang, P.D. (2001) Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 292, 1897-1899.
[7] Pan, Z.W., Dai, Z.R. and Wang, Z.L. (2001) Nanobelts of Semiconducting Oxides. Science, 291, 1947-1949.
[8] Shi, W.S., Peng, H., Wang, N., Li, C.P., Xu, L., Lee, C.S., Kalish, R. and Lee, S.T. (2001) Free-Standing Single Crystal Silicon Nanoribbons. Journal of the American Chemical Society, 123, 11095-11096.
[9] Hu, J., Odom, T.W. and Lieber, C.M. (1999) Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes. Accounts of Chemical Research, 32, 435-445.
[10] Kazes, M., Lewis, D.Y., Ebenstein, Y., Mokari, T. and Banin, U. (2002) Lasing from Semiconductor Quantum Rods in a Cylindrical Microcavity. Advanced Materials, 14, 317-321.<317::AID-ADMA317>3.0.CO;2-U
[11] Lee, K.-H., Bae, Y.-J. and Byeon, S.-H. (2008) pH Dependent Hydrothermal Synthesis and Photoluminescence of Gd2O3:Eu Nanostructures. Bulletin of the Korean Chemical Society, 29, 2161-2168.
[12] Ropp, R.C. (1993) The Chemistry of Artificial Lighting Devices: Lamps, Phosphors, and Cathode Ray Tubes. Elsevier, New York.
[13] Blasse, G. and Grabmaier, B.C. (1994) Luminescent Materials. Springer, New York.
[14] Wan, J., Wang, Z., Chen, X., Mu, L. and Qian, Y. (2005) Shape-Tailored Photoluminescent Intensity of Red Phosphor Y2O3:Eu3+. Journal of Crystal Growth, 284, 538-543.
[15] Xu, G.X. and Xiao, J.M. (1985) New Frontiers Rare Earth Science and Application. Academic Press, New York.
[16] Cuif, J.P., Rohart, E., Macaudiere, P., Bauregard, C., Suda, E., Pacaud, B., Imanaka, N., Masui, T. and Tamura, S. (2004) Binary Rare Earth Oxides. Kluwer Academic Publishers, Dordrecht.
[17] Bae, Y.J., Lee, K.H. and Byeon, S.H. (2009) Synthesis and Eu3+ Concentration-Dependent Photoluminescence of Gd2-xEuxO3 Nanowires. Journal of Luminescence, 129, 81-85.
[18] Beaurepaire, E., Buissette, V., Sauviat, M.P., Mercuri, A., Martin, J.L., Lahlil, K., Aume, D., Huignard, A., Gacoin, T., Boilot, J.P. and Alexandrou, A. (2004) Functionalized Fluorescent Oxide Nanoparticles: Artificial Toxins for Sodium Channel Targeting and Imaging at the Single-Molecule Level. Nano Letters, 4, 2079-2083.
[19] Louis, C., Bazzi, R., Marquette, C.A., Bridot, J.L., Roux, S., Ledoux, G., Mercier, B., Blum, L., Perriat, P. and Tille-ment, O. (2005) Nanosized Hybrid Particles with Double Luminescence for Biological Labeling. Chemistry of Materials, 17, 1673-1682.
[20] Nichkova, M., Dosev, D., Gee, S.J., Hammock, B.D. and Kennedy, I.M. (2005) Quantum Dots as Reporters in Multiplexed Immunoassays for Biomarkers of Exposure to Agrochemicals. Analytical Letters, 40, 1423-1433.
[21] Goldys, E.M., Tomsia, K.D., Jinjun, S., Dosev, D., Kennedy, I.M., Yatsunenko, S. and Godlewski, M. (2006) Optical Characterization of Eu-Doped and Undoped Gd2O3 Nanoparticles Synthesized by the Hydrogen Flame Pyrolysis Method. Journal of the American Chemical Society, 128, 14498-14505.
[22] Zhou, Y., Lin, J. and Wang, S. (2003) Energy Transfer and Up-Conversion Luminescence Properties of Y2O3:Sm and Gd2O3:Sm Phosphors. Journal of Solid State Chemistry, 171, 391-395.
[23] Rossner, W. and Grabmaier, B.C. (1991) Phosphors for X-Ray Detectors in Computed Tomography. Journal of Luminescence, 48-49, 29-36.
[24] Guo, C., Chen, T., Luan, L., Zhang, W. and Huang, D. (2008) Luminescent Properties of R2(MoO4)3:Eu3+ (R = La, Y, Gd) Phosphors Prepared by Sol-Gel Process. Journal of Physics and Chemistry of Solids, 69, 1905-1911.
[25] Pereira, P.F.S., de Moura, A.P., Nogueira, I.C., Lima, M.V.S., Longo, E., de Sousa Filho, P.C., Serra, O.A., Nassar, E.J. and Rosa, I.L.V. (2012) Study of the Annealing Temperature Effect on the Structural and Luminescent Properties of SrWO4:Eu Phosphors Prepared by a Non-Hydrolytic Sol-Gel Process. Journal of Alloys and Compounds, 526, 11-21.
[26] Rosa, I.L.V., Oliveira, L.H., Suzuki, C.K., Varela, J.A., Leite, E.R. and Longo, E. (2008) SiO2-GeO2 Soot Perform as a Core for Eu2O3 Nanocoating: Synthesis and Photophysical Study. Journal of Fluorescence, 18, 541-545.
[27] Morais, E.A., Scalvi, L.V.A., Tabata, A., De Oliveira, J.B.B. and Ribeiro, S.J.L. (2008) Photoluminescence of Eu3+ Ion in SnO2 Obtained by Sol-Gel. Journal of Materials Science, 43, 345-349.
[28] Marques, A.P.A., Tanaka, M.T.S., Longo, E., Leite, E.R. and Rosa, I.L.V. (2011) The Role of the Eu3+ Concentration on the SrMoO4:Eu Phosphor Properties: Synthesis, Characterization and Photophysi-
cal Studies. Journal of Fluorescence, 21, 893-899.
[29] Yan, M.F., Huo, T.C.D. and Ling, H.C.J. (1987) Preparation of Y3Al5O12-Based Phosphor Powders. Journal of the Electrochemical Society, 134, 493-498.
[30] Shea, L.E., McKittrick, J., Lopez, O.A. and Sluzky, E. (1996) Synthesis of Red-Emitting, Small Particle Size Luminescent Oxides Using an Optimized Combustion Process. Journal of the American Ceramic Society, 79, 3257-3265.
[31] Ravichandran, D., Roy, R., White, W.B. and Erdei, S. (1997) Synthesis and Characterization of Sol-Gel Derived HexaAluminate Phosphor. Journal of Materials Research, 12, 819-824.
[32] Erdei, S., Roy, R., Harshe, G., Juwhari, S., Agrawal, H.D., Ainger, F.W. and White, W.B. (1995) The Effect of Powder Preparation Processes on the Luminescent Properties of Yttrium Oxide Based Phosphor Materials. Materials Research Bulletin, 30, 745-753.
[33] Santos, M.L., Lima, R.C., Riccardi, C.S., Tranquilin, R.L., Bueno, P.R., Varela, J.A. and Longo, E. (2008) Preparation and Characterization of Ceria Nanospheres by Microwave-Hydrothermal Method. Materials Letters, 62, 4509-4511.
[34] Lima, R.C., Macario, L.R., Espinosa, J.W.M., Longo, V.M., Erlo, R., Marana, N.L., Sambrano, J.R., Santos, M.L.D., Moura, A.P., Pizani, P.S., Andres, J., Longo, E. and Varela, J.A. (2008) Toward an Understanding of Intermediate- and Short-Range Defects in ZnO Single Crystals. A Combined Experimental and Theoretical Study. The Journal of Physical Chemistry A, 112, 8970-8978.
[35] Moura, A.P., Cavalcante, L.S., Sczancoski, J.C., Stroppa, D.G., Paris, E.C., Ramirez, A.J., Varela, J.A. and Longo, E. (2010) Structure and Growth Mechanism of CuO Plates Obtained by Microwave-Hydrothermal without Surfactants. Advanced Powder Technology, 21, 197-202.
[36] de Moura, A.P., Lima, R.C., Moreira, M.L., Volanti, D.P., Espinosa, J.W.M., Orlandi, M.O., Pizani, P.S., Varela, J.A. and Longo, E. (2010) ZnO Architectures Synthesized by a Microwave-Assisted Hydrothermal Method and Their Photoluminescence Properties. Solid State Ionics, 181, 775-780.
[37] Motta, F.V., Lima, R.C., Marques, A.P.A., Li, M.S., Leite, E.R., Varela, J.A. and Longo, E. (2010) Indium Hydroxide Nanocubes and Microcubes Obtained by Microwave-Assisted Hydrothermal Method. Journal of Alloys and Compounds, 497, L25-L28.
[38] de Moura, A.P., Lima, R.C., Paris, E.C., Li, M.S., Varela, J.A. and Longo, E. (2011) Formation of β-Nickel Hydroxide Plate-Like Structures under Mild Conditions and Their Optical Properties. Journal of Solid State Chemistry, 184, 2818-2823.
[39] Bohr, H. and Bohr, J. (2000) Microwave-Enhanced Folding and Denaturation of Globular Proteins. Physical Review E, 61, 4310-4314.
[40] Blanco, C. and Auerbach, S.M. (2002) Microwave-Driven Zeolite-Guest Systems Show Athermal Effects from None-quilibrium Molecular Dynamics. Journal of the American Chemical Society, 124, 6250-6251.
[41] Favretto, L., Nugent, W.A. and Licini, G. (2002) Highly Regioselective Microwave-Assisted Synthesis of Enantiopure C3-Symmetric Trialkanolamines. Tetrahedron Letters, 43, 2581-2584.
[42] Hoz, A.D.L., Diaz-Ortiz, A. and Moreno, A. (2004) Selectivity in Organic Synthesis under Microwave Irradiation. Current Organic Chemistry, 8, 903-918.
[43] Bren, M., Janezic, D. and Bren, U. (2010) Microwave Catalysis Revisited: An Analytical Solution. The Journal of Physical Chemistry A, 114, 4197-4202.
[44] Sun, L.D., Yao, J., Liu, C., Liao, C. and Yan, C.H. (2000) Rare Earth Activated Nanosized Oxide Phosphors: Synthesis and Optical Properties. Journal of Luminescence, 87-89, 447-450.
[45] Kappe, C.O., Stadler, A. and Dallinger, D. (2012) Microwaves in Organic and Medicinal Chemistry. 2nd Edition, Vol. 52, Wiley-VCH, Weinheim.
[46] Obermayer, D., Gutmann, B. and Kappe, C.O. (2009) Microwave Chemistry in Silicon Carbide Reaction Vials: Separating Thermal from Nonthermal Effect. Angewandte Chemie International Edition, 48, 8321-8324.
[47] Yao, B.D. and Wang, N. (2001) Carbon Nanotube Arrays Prepared by MWCVD. The Journal of Physical Chemistry B, 105, 11395-11398.
[48] Zhu, Y.J., Wang, W.W., Qi, R.J. and Hu, X.L. (2004) Microwave-Assisted Synthesis of Single-Crystalline Tellurium Nanorods and Nanowires in Ionic Liquids. Angewandte Chemie International Edition, 43, 1410-1414.
[49] Tompsett, G.A., Conner, W.C. and Yngvesson, K.S. (2006) Microwave Synthesis of Nanoporous Materials. Chem-PhysChem, 7, 296-319.
[50] de Moura, A.P., de Oliveira, L.H., Paris, E.C., Li, M.S., Andrés, J., Varela, J.A., Longo, E. and Rosa, I.L.V. (2011) Photolumiscent Properties of Nanorods and Nanoplates Y2O3:Eu3+. Journal of Fluorescence, 21, 1431-1438.
[51] Chang, C. and Mao, D. (2007) Thermal Dehydration Kinetics of a Rare Earth Hydroxide, Gd(OH)3. International Journal of Chemical Kinetics, 39, 75-81.
[52] Rietveld, H.M. (1969) A Profile Refinement Method for Nuclear and Magnetic Structures. Journal of Applied Crystal-lography, 2, 65-71.
[53] Larson, C.A. and Von Dreele, R.B. (2001) The Regents of the University of California, Copyright 1985-2000, Los Alamos National Laboratory, Los Alamos, EUA.
[54] Thompson, P., Cox, D.E. and Hastings, J.B. (1987) Rietveld Refinement of Debye-Scherrer Synchrontron X-Ray Data from Al2O3. Journal of Applied Crystallography, 20, 79-83.
[55] Finger, L.W., Cox, D.E. and Jephcoat, A.P. (1994) A Correction for Powder Diffraction Peak Asymmetry Due to Axial Divergence. Journal of Applied Crystallography, 27, 892-900.
[56] Stephens, P.W. (1999) Phenomenological Model of Anisotropic Peak Broadening in Powder Diffraction. Journal of Applied Crystallography, 32, 281-289.
[57] Momma, K. and Izumi, F. (2008) VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis. Journal of Applied Crystallography, 41, 653-658.
[58] Buijs, M., Meyerink, A. and Blasse, G. (1987) Energy Transfer between Eu3+ Ions in a Lattice with Two Different Crystallographic Sites: Y2O3:Eu3+, Gd2O3:Eu3+ and Eu2O3. Journal of Luminescence, 37, 9-20.
[59] Kevorkov, A.M., Karyagin, V.F., Munchaev, A.I., Uyukin, E.M., Bolotina, N.B., Chernaya, T.S., Bagdasarov, K.S. and Simonov, V.I. (1995) Y2O3 Single Crystals: Growth, Structure and Photoinduc-
ed Effects. Crystallography Reports, 40, 23.
[60] Godinho, M., Ribeiro, C., Longo, E. and Leite, E.R. (2008) Influence of Microwave Heating on the Growth of Gadolinium-Doped Cerium Oxide Nanorods. Crystal Growth Design, 8, 384-386.
[61] Baraldi, P. and Davolio, G. (1989) An Electrochemical and Spectral Study of the Nickel Oxide Electrode. Materials Chemistry and Physics, 21, 143-154.
[62] Guo, H., Yang, X., Xiao, T., Zhang, W., Lou, L. and Mugnier, J. (2004) Structure and Optical Properties of Sol-Gel Derived Gd2O3 Waveguide Films. Applied Surface Science, 230, 215-221.
[63] Jayasimhadri, M., Ratnam, B.V., Jang, K., Lee, H.S., Chen, B., Yi, S.S., Jeong, J.H. and Moorthy, L.R. (2011) Combustion Synthesis and Luminescent Properties of Nano and Submicrometer-Size Gd2O3:Dy3+ Phosphors for White LEDs. International Journal of Applied Ceramic Technology, 8, 709-717.
[64] Liu, G., Hong, G., Wang, J. and Dong, X. (2007) Hydrothermal Synthesis of Spherical and Hollow Gd2O3:Eu3+ Phosphors. Journal of Alloys and Compounds, 432, 200-204.
[65] Liu, G., Hong, G., Dong, X. and Wang, J. (2008) Preparation and Characterization of Gd2O3:Eu3+ Luminescence Nanotubes. Journal of Alloys and Compounds, 466, 512-516.
[66] Schmechel, R., Kennedy, M., von Seggerm, H., Winkler, H., Kolbe, M., Fischer, R.A., et al. (2001) Luminescence Properties of Nanocrystalline Y2O3:Eu3+ in Different Host Materials. Journal of Applied Physics, 89, 1679-1686.
[67] Pang, M.L., Lin, J., Fu, J., Xing, R.B., Luo, C.X. and Han, Y.C. (2003) Preparation, Patterning and Luminescent Properties of Nanocrystalline Gd2O3:A (A = Eu3+, Dy3+, Sm3+, Er3+) Phosphor Films via Pechini Sol-Gel Soft Lithography. Optical Materials, 23, 547-558.
[68] Teotonio, E.E.S., Felinto, M.C.F.C., Brito, H.F., Malta, O.L., Najjar, A.C.R. and Strek, W. (2004) Synthesis, Crystal-line Structure and Photoluminescence Investigations of the New Trivalent Rare Earth Complexes (Sm3+, Eu3+ and Tb3+) Containing 2-Thiophenecarboxylate as Sensitizer. Inorganica Chimica Acta, 357, 451-460.
[69] Rosa, I.L.V., Maciel, A.P., Longo, E., Leite, E.R. and Varela, J.A. (2006) Synthesis and Photoluminescence Study of La1.8Eu0.2O3 Coating on Nanometric α-Al2O3. Materials Research Bulletin, 41, 1791-1797.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.