Analysis of the Metric in Quasicrystals—Linear Response in Logarithmically Periodic Solids

DOI: 10.4236/jmp.2014.512109   PDF   HTML   XML   2,197 Downloads   2,786 Views   Citations


The metric, that enables measurement of structural data from diffraction in quasicrystals, is analyzed. A modified compromise spacing effect is the consequence of scattering of periodic electromagnetic or electron waves by atoms arranged on a geometric grid in an ideal hierarchic structure. This structure is infinitely extensive, uniquely aligned and uniquely icosahedral. The approximate analytic factor that converts the geometric terms base τ, into periodic terms modulo 2π, is . It matches the simulated metric cs=0.947, consistently used in second (Bragg) order, over a wide scale from atomic dimensions to sixth order superclusters.

Share and Cite:

Bourdillon, A. (2014) Analysis of the Metric in Quasicrystals—Linear Response in Logarithmically Periodic Solids. Journal of Modern Physics, 5, 1079-1084. doi: 10.4236/jmp.2014.512109.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Bourdillon, A.J. (2014) Journal of Modern Physics, 5 488-496.
[2] Bourdillon, A. J. (2009) Solid State Communications, 149, 1221-1225.
[3] Bourdillon, A.J. (2013) Micron, 51, 21-25.
[4] Bourdillon, A.J. (2011) Logarithmically Periodic Solids. Nova Science, New York.
[5] Bourdillon, A.J. (2012) Metric, Myth and Quasicrystals. UHRL, San Jose.
[6] Bourdillon, A.J. (2009) Quasicrystals and Quasi Drivers. UHRL, San Jose.
[7] Bourdillon, A.J. (2010) Quasicrystals’ 2D Tiles in 3D Superclusters. UHRL, San Jose.
[8] Steurer, W. (2004) Zeitschrift für Kristallographie, 219, 391-446.
[9] Steurer, W. and Deloudi, S. (2008) ActaCrystallographica, A64, 1-11.
[10] Shechtman, D., Blech, I., Gratias, D. and Cahn, J.W. (1984) Physical Review Letters, 53, 1951-1953.
[11] Cullity, B.D. (1978) Elements of X-Ray Diffraction. 2nd Edition, Addison-Wesley, Addison.
[12] Hirsch, P., Howie, A., Nicholson, R.B., Pashley, D.W. and Whelan, M.J. (1977) Electron Microscopy of Thin Crystals. Krieger.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.