Synthetic Lethality Induced by a Strong Drosophila Enhancer of Expanded Polyglutamine Tract


Proteins containing an expanded polyglutamine tract are neurotoxins. The expanded polyglutamine proteins influence a variety of cellular functions. In Drosophila the GMR-Gal4/UAS expression system has been widely used in an eye-based model to study human neurodegenerative diseases. This system has facilitated the isolation and characterization of abundant Drosophilagenes that interact with the expanded polyglutamine proteins. We used the GMR-Gal4/UAS system to express three proteins containing an expanded polyglutamine tract, or an expanded polyglutamine tract alone. Doubling the dose of these proteins resulted in pupal lethality, indicating that these toxic proteins induced a sensitized condition that is prone to synthetic lethality. By using the GMR-Gal4/UAS system, we showed that a Drosophilagene interacts with three expanded polyglutamine proteins to induce a synthetic lethal phenotype. We further demonstrated that the synthetic lethality was mediated through the toxic expanded polyglutamine tract. Our study raises a possibility that conventional genetic screens may not recover synthetic lethal alleles, which are presumably stronger interacting alleles than the currently known modifiers of an expanded polyglutamine tract, due to synthetic lethality.

Share and Cite:

Zhang, P. , Wang, Q. , Hughes, H. and Intrieri, G. (2014) Synthetic Lethality Induced by a Strong Drosophila Enhancer of Expanded Polyglutamine Tract. Open Journal of Genetics, 4, 300-315. doi: 10.4236/ojgen.2014.44028.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Orr, H.T. and Zoghbi, H.Y. (2007) Trinucleotide Repeat Disorders. Annual Review of Neuroscience, 30, 575-621.
[2] Winderickx, J., Delay, C., De Vos, A., Klinger, H., Pellens, K., Vanhelmont, T., Van Leuven, F. and Zabrocki, P. (2008) Protein Folding Diseases and Neurodegeneration: Lessons Learned from Yeast. Biochimica et Biophysica Acta, 1783, 1381-1395.
[3] van Ham, T.J., Breitling, R., Swertz, M.A. and Nollen, E.A. (2009) Neurodegenerative Diseases: Lessons from Genome-Wide Screens in Small Model Organisms. EMBO Molecular Medicine, 1, 360-370.
[4] Yu, Z. and Bonini, N.M. (2011) Modeling Human Trinucleotide Repeat Diseases in Drosophila. International Review of Neurobiology, 99, 191-212.
[5] Blum, E.S., Schwendeman, A.R. and Shaham, S. (2012) PolyQ Disease: Misfiring of a Developmental Cell Death Program? Trends in Cell Biology, 23, 168-174.
[6] Figiel, M., Szlachcic, W.J., Switonski, P.M., Gabka, A. and Krzyzosiak, W.J. (2012) Mouse Models of Polyglutamine Diseases: Review and Data Table. Part I. Molecular Neurobiology, 46, 393-429.
[7] Ingram, M.A., Orr, H.T. and Clark, H.B. (2012) Genetically Engineered Mouse Models of the Trinucleotide-Repeat Spinocerebellar Ataxias. Brain Research Bulletin, 88, 33-42.
[8] Switonski, P.M., Szlachcic, W.J., Gabka, A., Krzyzosiak, W.J. and Figiel, M. (2012) Mouse Models of Polyglutamine Diseases in Therapeutic Approaches: Review and Data Table. Part II. Molecular Neurobiology, 46, 430-466.
[9] Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C., Lawton, M., Trottier, Y., Lehrach, H., Davies, S.W., et al. (1996) Exon 1 of the HD Gene with an Expanded CAG Repeat Is Sufficient to Cause a Progressive Neurological Phenotype in Transgenic Mice. Cell, 87, 493-506.
[10] Marsh, J.L., Walker, H., Theisen, H., Zhu, Y.Z., Fielder, T., Purcell, J. and Thompson, L.M. (2000) Expanded Polyglutamine Peptides Alone Are Intrinsically Cytotoxic and Cause Neurodegeneration in Drosophila. Human Molecular Genetics, 9, 13-25.
[11] Brignull, H.R., Moore, F.E., Tang, S.J. and Morimoto, R.I. (2006) Polyglutamine Proteins at the Pathogenic Threshold Display Neuron-Specific Aggregation in a Pan-Neuronal Caenorhabditis Elegans Model. The Journal of Neuroscience, 26, 7597-7606.
[12] Ellerby, L.M., Andrusiak, R.L., Wellington, C.L., Hackam, A.S., Propp, S.S., Wood, J.D., Sharp, A.H., Margolis, R.L., Ross, C.A., Salvesen, G.S., et al. (1999) Cleavage of Atrophin-1 at Caspase Site Aspartic Acid 109 Modulates Cytotoxicity. Journal of Biological Chemistry, 274, 8730-8736.
[13] Goti, D., Katzen, S.M., Mez, J., Kurtis, N., Kiluk, J., Ben-Haiem, L., Jenkins, N.A., Copeland, N.G., Kakizuka, A., Sharp, A.H., et al. (2004) A Mutant Ataxin-3 Putative-Cleavage Fragment in Brains of Machado-Joseph Disease Patients and Transgenic Mice Is Cytotoxic above a Critical Concentration. The Journal of Neuroscience, 24, 10266-10279.
[14] Jung, J., Xu, K., Lessing, D. and Bonini, N.M. (2009) Preventing Ataxin-3 Protein Cleavage Mitigates Degeneration in a Drosophila Model of SCA3. Human Molecular Genetics, 18, 4843-4852.
[15] Suzuki, Y., Nakayama, K., Hashimoto, N. and Yazawa, I. (2010) Proteolytic Processing Regulates Pathological Accumulation in Dentatorubral-Pallidoluysian Atrophy. FEBS Journal, 277, 4873-4387.
[16] Zheng, Z. and Diamond, M.I. (2012) Huntington Disease and the Huntingtin Protein. Progress in Molecular Biology and Translational Science, 107, 189-214.
[17] Zuccato, C., Valenza, M. and Cattaneo, E. (2010) Molecular Mechanisms and Potential Therapeutical Targets in Huntington’s Disease. Physiological Reviews, 90, 905-981.
[18] Fernandez-Funez, P., Nino-Rosales, M.L., de Gouyon, B., She, W.C., Luchak, J.M., Martinez, P., Turiegano, E., Benito, J., Capovilla, M., Skinner, P.J., et al. (2000) Identification of Genes that Modify Ataxin-1-Induced Neurodegeneration. Nature, 408, 101-106.
[19] Kazemi-Esfarjani, P. and Benzer, S. (2000) Genetic Suppression of Polyglutamine Toxicity in Drosophila. Science, 287, 1837-1840.
[20] Willingham, S., Outeiro, T.F., DeVit, M.J., Lindquist, S.L. and Muchowski, P.J. (2003) Yeast Genes that Enhance the Toxicity of a Mutant Huntingtin Fragment or Alpha-Synuclein. Science, 302, 1769-1772.
[21] Nollen, E.A., Garcia, S.M., van Haaften, G., Kim, S., Chavez, A., Morimoto, R.I. and Plasterk, R.H. (2004) Genome-Wide RNA Interference Screen Identifies Previously Undescribed Regulators of Polyglutamine Aggregation. Proceedings of the National Academy of Sciences of the United States of America, 101, 6403-6408.
[22] Giorgini, F., Guidetti, P., Nguyen, Q., Bennett, S.C. and Muchowski, P.J. (2005) A Genomic Screen in Yeast Implicates Kynurenine 3-Monooxygenase as a Therapeutic Target for Huntington Disease. Nature Genetics, 37, 526-531.
[23] Bilen, J. and Bonini, N.M. (2007) Genome-Wide Screen for Modifiers of Ataxin-3 Neurodegeneration in Drosophila. PLoS Genetics, 3, 1950-1964.
[24] Zhang, S., Binari, R., Zhou, R. and Perrimon, N. (2010) A Genomewide RNA Interference Screen for Modifiers of Aggregates Formation by Mutant Huntingtin in Drosophila. Genetics, 184, 1165-1179.
[25] Vossfeldt, H., Butzlaff, M., Prussing, K., Ni Charthaigh, R.A., Karsten, P., Lankes, A., Hamm, S., Simons, M., Adryan, B., Schulz, J.B., et al. (2012) Large-Scale Screen for Modifiers of Ataxin-3-Derived Polyglutamine-Induced Toxicity in Drosophila. PLoS One, 7, e47452.
[26] Brand, A.H. and Perrimon, N. (1993) Targeted Gene Expression as a Means of Altering Cell Fates and Generating Dominant Phenotypes. Development, 118, 401-415.
[27] Jackson, G.R. (2008) Guide to Understanding Drosophila Models of Neurodegenerative Diseases. PLoS Biology, 6, e53.
[28] Moses, K. and Rubin, G.M. (1991) Glass Encodes a Site-Specific DNA-Binding Protein That Is Regulated in Response to Positional Signals in the Developing Drosophila Eye. Genes & Development, 5, 583-593.
[29] Freeman, M. (1996) Reiterative Use of the EGF Receptor Triggers Differentiation of all Cell Types in the Drosophila Eye. Cell, 87, 651-660.
[30] Freeman, M. (1997) Personal Communication to FlyBase.
[31] Warrick, J.M., Paulson, H.L., Gray-Board, G.L., Bui, Q.T., Fischbeck, K.H., Pittman, R.N. and Bonini, N.M. (1998) Expanded Polyglutamine Protein Forms Nuclear Inclusions and Causes Neural Degeneration in Drosophila. Cell, 93, 939-949.
[32] Thibault, S.T., Singer, M.A., Miyazaki, W.Y., Milash, B., Dompe, N.A., Singh, C.M., Buchholz, R., Demsky, M., Fawcett, R., Francis-Lang, H.L., et al. (2004) A Complementary Transposon Tool Kit for Drosophila melanogaster Using P and Piggybac. Nature Genetics, 36, 283-287.
[33] McQuilton, P., St Pierre, S.E. and Thurmond, J. (2012) FlyBase 101—The Basics of Navigating FlyBase. Nucleic Acids Research, 40, D706-D714.
[34] Wernet, M.F., Labhart, T., Baumann, F., Mazzoni, E.O., Pichaud, F. and Desplan, C. (2003) Homothorax Switches Function of Drosophila Photoreceptors from Color to Polarized Light Sensors. Cell, 115, 267-279.
[35] Parks, A.L., Cook, K.R., Belvin, M., Dompe, N.A., Fawcett, R., Huppert, K., Tan, L.R., Winter, C.G., Bogart, K.P., Deal, J.E., et al. (2004) Systematic Generation of High-Resolution Deletion Coverage of the Drosophila melanogaster Genome. Nature Genetics, 36, 288-292.
[36] Guarente, L. and Hoar, E. (1984) Upstream Activation Sites of the CYC1 Gene of Saccharomyces cerevisiae Are Active When Inverted but Not When Placed Downstream of the “TATA Box”. Proceedings of the National Academy of Sciences of the United States of America, 81, 7860-7864.
[37] Struhl, K. (1984) Genetic Properties and Chromatin Structure of the Yeast Gal Regulatory Element: An Enhancer-Like Sequence. Proceedings of the National Academy of Sciences of the United States of America, 81, 7865-7869.
[38] Dobi, K.C. and Winston, F. (2007) Analysis of Transcriptional Activation at a Distance in Saccharomyces cerevisiae. Molecular and Cellular Biology, 27, 5575-5586.
[39] Li, L.B. and Bonini, N.M. (2010) Roles of Trinucleotide-Repeat RNA in Neurological Disease and Degeneration. Trends in Neurosciences, 33, 292-298.
[40] Steffan, J.S., Agrawal, N., Pallos, J., Rockabrand, E., Trotman, L.C., Slepko, N., Illes, K., Lukacsovich, T., Zhu, Y.Z., Cattaneo, E., et al. (2004) SUMO Modification of Huntingtin and Huntington’s Disease Pathology. Science, 304, 100-104.
[41] Jackson, G.R., Salecker, I., Dong, X., Yao, X., Arnheim, N., Faber, P.W., MacDonald, M.E. and Zipursky, S.L. (1998) Polyglutamine-Expanded Human Huntingtin Transgenes Induce Degeneration of Drosophila Photoreceptor Neurons. Neuron, 21, 633-642.
[42] Engels, W. (1989) P elements in Drosophila melanogaster. In: Berg, D. and Home, M., Eds., Mobile DNA, American Society for Microbiology, Washington DC, 437-484.
[43] Zhang, P. and Spradling, A.C. (1993) Efficient and Dispersed Local P Element Transposition from Drosophila Females. Genetics, 133, 361-373.
[44] Timakov, B., Liu, X., Turgut, I. and Zhang, P. (2002) Timing and Targeting of P-Element Local Transposition in the Male Germline Cells of Drosophila melanogaster. Genetics, 160, 1011-1022.
[45] Sudi, J., Zhang, S., Intrieri, G., Hao, X. and Zhang, P. (2008) Coincidence of P-Insertion Sites and Breakpoints of Deletions Induced by Activating P Elements in Drosophila. Genetics, 179, 227-235.
[46] Keuling, A., Yang, F., Hanna, S., Wang, H., Tully, T., Burnham, A., Locke, J. and McDermid, H.E. (2007) Mutation Analysis of Drosophila dikar/CG32394, Homologue of the Chromatin-Remodelling Gene CECR2. Genome, 50, 767-777.
[47] Banting, G.S., Barak, O., Ames, T.M., Burnham, A.C., Kardel, M.D., Cooch, N.S., Davidson, C.E., Godbout, R., McDermid, H.E. and Shiekhattar, R. (2005) CECR2, a Protein Involved in Neurulation, Forms a Novel Chromatin Remodeling Complex with SNF2L. Human Molecular Genetics, 14, 513-524.
[48] Fairbridge, N.A., Dawe, C.E., Niri, F.H., Kooistra, M.K., King-Jones, K. and McDermid, H.E. (2010) Cecr2 Mutations Causing Exencephaly Trigger Misregulation of Mesenchymal/Ectodermal Transcription Factors. Birth Defects Research Part A: Clinical and Molecular Teratology, 88, 619-625.
[49] Halfon, M.S., Gisselbrecht, S., Lu, J., Estrada, B., Keshishian, H. and Michelson, A.M. (2002) New Fluorescent Protein Reporters for Use with the Drosophila Gal4 Expression System and for Vital Detection of Balancer Chromosomes. Genesis, 34, 135-138.
[50] Rorth, P., Szabo, K., Bailey, A., Laverty, T., Rehm, J., Rubin, G.M., Weigmann, K., Milan, M., Benes, V., Ansorge, W. and Cohen, S.M. (1998) Systematic Gain-of-Function Genetics in Drosophila. Development, 125, 1049-1057.
[51] Yeh, P.A., Yang, W.H., Chiang, P.Y., Wang, S.C., Chang, M.S. and Chang, C.J. (2012) Drosophila Eyes Absent Is a Novel mRNA Target of the Tristetraprolin (TTP) Protein DTIS11. International Journal of Biological Sciences, 8, 606-619.
[52] Li, W.Z., Li, S.L., Zheng, H.Y., Zhang, S.P. and Xue, L. (2012) A Broad Expression Profile of the GMR-GAL4 Driver in Drosophila melanogaster. Genetics and Molecular Research, 11, 1997-2002.
[53] Flybase Recombinant Construct P{GAL4-ninaE.GMR}.
[54] Selvi, B.R., Cassel, J.C., Kundu, T.K. and Boutillier, A.L. (2010) Tuning Acetylation Levels with HAT Activators: Therapeutic Strategy in Neurodegenerative Diseases. Biochimica et Biophysica Acta, 1799, 840-853.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.