[1]
|
Layton, H.E. (2002) Mathematical Models of the Mammalian Urine Concentrating Mechanism, Membrane Transport and Renal Physiology. 129, Springer-Verlag, New York.
|
[2]
|
Stephenson, J.L., Zhang, Y., Eftekhari, A. and Tewarson, R. (1987) Electrolyte Transport in a Central Core Model of the Renal Medulla. American Journal of Physiology—Renal Physiology, 253, F982-F997.
|
[3]
|
Stephenson, J.L. (1972) Concentration of Urine in a Central Core Model of the Renal Counterflow System. Kidney International, 2, 85-94. http://dx.doi.org/10.1038/ki.1972.75
|
[4]
|
Wexler, A.S., Kalaba, R.E. and Marsh, D.J. (1991) Three-Dimensional Anatomy and Renal Concetrating Mechanism. Modeling Results. American Journal of Physiology—Renal Physiology, 260, F368-F383.
|
[5]
|
Thomas, S.R., Layton, A.T., Layton, H.E. and Moor, L.C. (2006) Kidney Modeling: Status and Perspectives. Proceedings of the IEEE, 94, 740-752. http://dx.doi.org/10.1109/JPROC.2006.871770
|
[6]
|
Weinstein, A.M. (1994) Mathematical Models of Tubular Transport. Annual Review of Physiology, 56, 691-709. http://dx.doi.org/10.1146/annurev.ph.56.030194.003355
|
[7]
|
Bykova, A.A. and Regirer, S.A. (2005) Mathematical Models in Urinary System Mechanics (Review). Fluid Dynamics, 40, 1-19. http://dx.doi.org/10.1007/s10697-005-0039-y
|
[8]
|
Pannabecker, T.L., Dantzler, W.H., Layton, H.E. and Layton, A.T. (2008) Role of Three-Dimensional Architecture in the Urine Concentrating Mechanism of the Rat Renal Inner Medulla. American Journal of Physiology—Renal Physiology, 295, F1271-F1285. http://dx.doi.org/10.1152/ajprenal.90252.2008
|
[9]
|
Wexler, A.S. and Marsh, D.J. (1991) Numerical Methods for Three-Dimensional Models of the Urine Concentrating Mechanism. Applied Mathematics and Computation, 45, 219-240. http://dx.doi.org/10.1016/0096-3003(91)90082-X
|
[10]
|
Layton, A.T., Layton, H.E., Dantzler, W.H. and Pannabecker, T.L. (2009) The Mammalian Urine Concentrating Mechanism: Hypotheses and Uncertainties. Physiology, 24, 250-256. http://dx.doi.org/10.1152/physiol.00013.2009
|
[11]
|
Stephenson, J.L., Zhang, Y. and Tewarson, R. (1989) Electrolyte, Urea, and Water Transport in a Two-Nephron Central Core Model of the Renal Medulla. American Journal of Physiology—Renal Physiology, 257, F399-F413.
|
[12]
|
Stephenson, J.L., Zhang, Y. and Tewarson, R. (1976) Electrolyte, Urea, and Water Transport in a Two-Nephron Central Core Model of the Renal Medulla. Proceedings of the National Academy of Sciences, 73, 252-258. http://dx.doi.org/10.1073/pnas.73.1.252
|
[13]
|
Mejia, R. and Stephenson, J.L. (1984) Solution of a Multinephron, Multisolute Model of the Mammalian Kidney by Newton and Continuation Methods. Mathematical Biosciences, 68, 279-298. http://dx.doi.org/10.1016/0025-5564(84)90036-1
|
[14]
|
Tewarson, R.P., Stephenson, J.L., Garcia, M. and Zhanc, Y. (1985) On the Solution of Equation for Renal Counterflow Models. Computers in Biology and Medicine, 15, 287-295. http://dx.doi.org/10.1016/0010-4825(85)90012-5
|
[15]
|
Wexler, A.S., Kalaba, R.E. and Marsh, D.J. (1991) Three-Dimensional Anatomy and Renal Concetrating Mechanism. Sensitivity Results. American Journal of Physiology—Renal Physiology, 260, F384-F394.
|
[16]
|
Layton, A.T. and Layton, H.E. (2002) A Semi-Lagrangian Semi-Implicit Numerical Method for Models of the Urine Concentrating Mechanism. SIAM Journal on Scientific Computing, 23, 1526-1548. http://dx.doi.org/10.1137/S1064827500381781
|
[17]
|
Layton, H.E., Pitman, E.B. and Knepper, A.M. (1995) A Dynamic Numerical Method for Models of the Urine Concentrating mechanism. SIAM Journal on Applied Mathematics, 55, 1390-1418. http://dx.doi.org/10.1137/S0036139993252864
|
[18]
|
Layton, A.T. and Layton, H.E. (2003) An Efficient Numerical Method for Distributed-Loop Models of the Urine Concentrating Mechanism. Mathematical Biosciences, 181, 111-132. http://dx.doi.org/10.1016/S0025-5564(02)00176-1
|
[19]
|
Layton, A.T., Pannabecker, T.L., Dantzler, W.H. and Layton, H.E. (2004) Two Modes for Concentrating Urine in Rat Inner Medulla. American Journal of Physiology—Renal Physiology, 287, F816-F839. http://dx.doi.org/10.1152/ajprenal.00398.2003
|
[20]
|
Jator, S. and Sinkala, Z. (2007) A High Order B-Spline Collocation Method for Linear Boundary Value Problems. Applied Mathematics and Computation, 191, 100-116. http://dx.doi.org/10.1016/j.amc.2007.02.027
|
[21]
|
Guyton, A.C. and Hall, J.E. (2006) Textbook of Medical Physiology. 11th Edition, Elsevier Saunders, Amsterdam.
|
[22]
|
Sands, J.M. and Layton, H.E. (2009) The Physiology of Urinary Concentration: An Update. Seminars in Nephrology, 29, 178-195. http://dx.doi.org/10.1016/j.semnephrol.2009.03.008
|
[23]
|
Kedem, O. and Katchalsky, Q. (1963) Permeability of Composite Membranes. Transactions of the Faraday Society, 59, 1931-1953. http://dx.doi.org/10.1039/tf9635901931
|
[24]
|
Weinstein, A.M. (2002) A Mathematical Model of Rat Collecting duct 1.Flow Effects on Transport and Urinary Acidification. American Journal of Physiology—Renal Physiology, 283, F1237-F1251.
|
[25]
|
Rice, R.G. and Do, D.D. (1995) Applied Mathematics and Modeling for Chemical Engineers. John Wiley and Sons, Inc., Hoboken.
|
[26]
|
Schafer, J.A. (2000) Interaction of Modeling and Experimental Approaches to Understanding Renal Salt and Water Balance. Annals of Biomedical Engineering, 28, 1002-1009. http://dx.doi.org/10.1114/1.1308497
|
[27]
|
Schafer, J.A. (2004) Experimental Validation of the Countercurrent Model of Urinary Concentration. American Journal of Physiology—Renal Physiology, 287, F861-F863. http://dx.doi.org/10.1152/classicessays.00020.2004
|
[28]
|
(2001) CRC Handbook of Chemistry and Physics. 82nd Edition, CRC, Cleveland.
|