Share This Article:

Thermomechanical Stress in the Evolution of Shear of Fiber-Matrix Interface Composite Material

Abstract Full-Text HTML Download Download as PDF (Size:398KB) PP. 399-403
DOI: 10.4236/msa.2011.25051    4,161 Downloads   7,426 Views   Citations

ABSTRACT

This work aims to describe the behavior of the interface using the method of load transfer between fiber and matrix in a composite material. Our contribution is to track the Evolution of the thermomechanical behavior by establishing a new mathematical model that describes the variation of shear stress along the interface. This model has been implemented in code in C++. The results revealed that the shear of the interface increases with temperature. This increase is partly due to the difference in expansion coefficient between fiber and matrix. The composite studied is T300/914; Carbon-Epoxy.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

D. Remaoun and A. Boutaous, "Thermomechanical Stress in the Evolution of Shear of Fiber-Matrix Interface Composite Material," Materials Sciences and Applications, Vol. 2 No. 5, 2011, pp. 399-403. doi: 10.4236/msa.2011.25051.

References

[1] J. Bikerman, “The Science of Adhesive Joints,” Aca- demic Press, Inc, New York & London, 1968, p. 258.
[2] L. J. Broutman and B. D. Agarwal, “Theoretical Study of the Effect of an Interfacial Layer on the Properties of Polymer,” Engineering & Science, Vol. 14, No. 8, 1974, pp. 581-588.
[3] P. S. Theocaris, “The Unfolding Model for the Repre- sentation of the Mesophase Layer in Composites,” Journal of Applied Polymer Science, Vol. 30, No. 2, 1985, pp. 621-645. doi:10.1002/app.1985.070300214
[4] D. F. Adams, “Micromechanical Predictions/Experimen- tal Correlations of the Influence of the Interface on the Mechanical and Plysical Properties of a Unidirectional Composite,” Composite Interfaces, Cleveland, 27-30 May 1986, pp. 351-365.
[5] H. L. Cox, “The Elasticity and Strength of Paper and Other Fibrous Materials,” British Journal of Applied Physics, Vol. 3, No. 3, 1952, pp. 72-79. doi:10.1088/0508-3443/3/3/302
[6] A. Kelly and W. R. Thyson, “Fiber strengthened materials,” In: V. F.Zackay, Ed., High Strength Materials, J. Wiley & Sons, London, 1964, pp. 578-602.
[7] M. R. Piggott, “How the Interface Controls the Proprieties of Fibre Composites,” Progress in science and engineering of composites, Tokyo, 25-28 Octorber 1982, pp.193-202.
[8] M. R. Piggot, “Debonding and Friction at Fibre-Polymer Interfaces. I: Criteria for Failure and Sliding,” Compos- ites Science and Technology, Vol. 30, No. 4, 1987, pp. 295-306. doi:10.1016/0266-3538(87)90017-0
[9] J. P. Favre, “Interface dans les composites fibreux,” Technique de l’Ingenieur, Traité Plastiques et Compo- sites, Vol. AM6, No. A7765, pp. A7765.1-A7765.21.
[10] M. Amestoy, “Introduction à la Mécanique des Milieu Déformables,” Ecole des mines de Paris, Paris, 1995.
[11] J. M. Berthelot, “Matériaux Composites, Comportement Mécanique et Analyse des Structures,” Hermès-Lavoisier, Paris, Juin 2005.
[12] J. Garrigues, “Fondements de la Mécanique des Milieux Continus,” Lavoisier, Paris, 2007.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.