Review on Molecular Typing Methods of Pathogens


This paper presents several common molecular typing methods, Pulsed-Field Gel Electrophoresis (PFGE), Restriction Fragment Length Polymorphisma (RFLP), Random Amplified Polymorphic DNA (RAPD), Automatic Ribotyping, rep-PCR, Multi-Locus Sequence Typing (MLST), in which the application and progress of molecular typing of pathgens for these methods are described. These methods played an important role in pathgens source tracking, knowing the source(s) of bacteria in pharmaceutical, preventing and controlling the diarrhea and food-poisoning outbreaks, which have great value in the remediation and prevention of further bacterial contamination.

Share and Cite:

Lin, T. , Lin, L. and Zhang, F. (2014) Review on Molecular Typing Methods of Pathogens. Open Journal of Medical Microbiology, 4, 147-152. doi: 10.4236/ojmm.2014.43017.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Botteldoorn, N., Herman, L., Rijpens, N., et al. (2004) Phenotypic and Molecular Typing of Salmonella Strains Reveal Different Contamination Source in Two Commercial Pig Slaughterhouses. Applied and Environmental Microbiology, 70, 5305-5314.
[2] Weigel, R.M., Qiaoa, B.Z., Teferedegneb, B., Suh, D.K., Barber, D.A., et al. (2004) Comparison of Pulsed Field Gel Electrophoresis and Repetitive Sequence Polymerase Chain Reaction as Genotyping Methods for Detection of Genetic Diversity and Inferring Transmission of Salmonella. Veterinary Microbiology, 100, 205-217.
[3] Tsen, H.Y. and Lin, J.S. (2001) Analysis of Salmonella Enteritidis Strains Isolated from Food-Poisoning Cases in Taiwan by Pulsed Field Gel Electrophoresis, Plasmid Profile and Phage Typing. Journal of Applied Microbiology, 91, 72-79.
[4] Garaizar, J., López-Molina, N., Laconcha, I., Baggesen, D.L., Rementeria, A., Vivanco, A., et al. (2000) Suitability of PCR Fingerprinting, Infrequent-Restriction Site PCR, and Pulsed-Field Gel Electrophoresis, Combined with Computerized Gel Analysis, in Library Typing of Salmonella Enterica Serovar Enteriditis. Applied and Environmental Microbiology, 66, 5273-5281.
[5] Schwartz, D.C. and Cantor, C.R. (1984) Separation of Yeast Chromosome-Sized DNAs by Pulsed Field Gradient Gel Electrophoresis. Cell, 37, 67-75.
[6] Singh, A., Goering, R.V., Simjee, S., Foley, S.L. and Zervos, M.J. (2006) Application of Molecular Techniques to the Study of Hospital Infection. Clinical Microbiology Reviews, 19, 512-530.
[7] Slater, G.W. (2009) DNA Gel Electrophoresis: The Reptation Model(s). Electrophoresis, 30, S181-S187.
[8] Fujino, T., Mori, N., Kawana, A., et al. (2001) Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus in a Tokyo Hospital in 2001. Japanese Journal of Infectious Diseases, 54, 240-242.
[9] Ji, H.L., Cheng, Y., Liu, X.F., et al. (2005) Application of Pulsed Field Gel Electrophoresis in Molecular Typing of Salmonella Typhimurium. Strait Journal of Preventive Medicine, 1, 15-22.
[10] Zhao, J., Yang, X.R., Xu, Y.F., et al. (2007) PFGE-Typing of Salmonella Typhimurium Isolates for Source Identification in Sichuan Province, Journal of Preventive Medicine Information, 2009, 12.
[11] Suthienkul, O., Iida, T. and Park, K.S. (1996) Restriction Fragment Length Polymorphism of the tdh and trh Genes in Clinical Vibrio parahaemolyticus Strains. Journal of Clinical Microbiology, 34, 1293-1295.
[12] Klich, M.A., Yu, J., Chang, P.K., Mullaney, E.J., Bhatnagar, D. and Cleveland, T.E. (1995) Hybridization of Genes Involved in Aflatoxin Biosynthesis to DNA of Aflatoxigenic and Non-Aflatoxigenic Aspergilli. Applied Microbiology and Biotechnology, 44, 439-443.
[13] Diaz-Guerra, T.M., Mellado, E., Cuenca-Estrella, M., Gaztelurrutia, L., Navarro, J.I. and Tudela, J.L. (2000) Genetic Similarity among one Aspergillus flavus Strain Isolated from a Patient Who Underwent Heart Surgery and Two Environmental Strains Obtained from the Operating Room. Journal of Clinical Microbiology, 38, 2419-2422.
[14] Hara Kudo, Y., Sugiyama, K., Nishibuchi, M., et al. (2003) Prevalence of Pandemic Thermostable Direct Hemolysin Producing Vibrio parahaemolyticus O3:K6 in Seafood and the Coastal Environment in Japan. Applied and Environmental Microbiology, 69, 3883-3891.
[15] Leal, N.C., da Silva, S.C., Cavalcanti, V.O., et al. (2008) Vibrio parahaemolyticus Serovar O3:K6 Gastroenteritis in Northeast Brazil. Journal of Applied Microbiology, 105, 691-697.
[16] Cetinkaya, Y., Kocagoz, S., Hayran, M., et al. (2000) Analysis of Minioutbreak of Methicillin-Resistant Staphylococcus aureus in a Surgical Ward by Using Arbitrarily Primed Polymerase Chain Reaction. Journal of Chemotherapy, 12, 138-144.
[17] Bruce, J. (1996) Automated System Rapidly Identifies and Characterizes Microorganisms in Food. Food Technology, 77, 77-81.
[18] Gendel, S.M., Ulaszek, J., Nishibuchi, M. and DePaola, A. (2001) Automated Ribotyping Differentiates Vibrio parahaemolyticus O3:K6 Strains Associated with the Texas Outbreak from other Clinical Strains. Journal of Food Protection, 64, 1617-1620.
[19] Mahmud, Z.H., Neogi, S.B., Kassu, A., Wada, T., Islam, M.S., Nair, G.B. and Ota, F. (2007) Seaweeds as a Reservoir for Diverse Vibrio parahaemolyticus Populations in Japan. International Journal of Food Microbiology, 118, 92-96.
[20] Versalovic, J., Koeuth, T. and Lupski, J.R. (1991) Distribution of Repetitive DNA Sequences in Eubacteria and Application to Fingerprinting of Bacterial Genomes. Nucleic Acids Research, 19, 6823-6831.
[21] Marshall, S., Clark, C.G., Wang, G., Mulvey, M., Kelly, M.T. and Johnson, W.M. (1999) Comparison of Molecular Methods for Typing Vibrio parahaemolyticus. Journal of Clinical Microbiology, 37, 2473-2478.
[22] Stern, M.J., Ames, G.F.L., Smith, N.H., Robinson, E.C. and Higgins, C.F. (1984) Repetitive Extragenic Palindromic Sequences: A Major Component of the Bacterial Genome. Cell, 37, 1015-1026.
[23] Wong, H.C., Liu, C.C., Pan, T.M., Wang, T.K., Lee, C.L. and Shih, D.Y.C. (1999) Molecular Typing of Vibrio arahaemolyticus Isolates, Obtained from Patients Involved in Food Poisoning Outbreaks in Taiwan, by Random Amplified Polymorphic DNA Analysis. Journal of Clinical Microbiology, 37, 1809-1812.
[24] Wong, H.C. and Lin, C.H. (2001) Evaluation of Typing of Vibrio parahaemolyticus by Three PCR Methods Using Specific Primers. Journal of Clinical Microbiology, 39, 4233-4240.
[25] Khan, A.A., McCarthy, S., Wang, R.F., et al. (2002) Characterization of United States Outbreak Isolates of Vibrio parahaemolyticus Using Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR and Development of a Rapid PCR Method for Detection of O3:K6 Isolates. FEMS Microbiology Letters, 206, 209-214.
[26] Chan, M., Maiden, M.C.J. and Spratt, B.G. (2001) Database-Driven Multi Locus Sequence Typing (MLST) of Bacterial Pathogens. Bioinformatics, 17, 1077-1083.
[27] Maiden, M.C.J., Bygraves, J.A., Feil, E., Morelli, G., et al. (1997) Multilocus Sequence Typing: A Portable Approach to the Identification of Clones within Populations of Pathogenic Microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 95, 3140-3145.
[28] Hunter, P.R. and Gaston, M.A. (1988) Numerical Index of the Discriminatory Ability of Typing Systems: An Application of Simpson’s Index of Diversity. Journal of Clinical Microbiology, 26, 2465-2466.
[29] Thompson, R.J., Bouwer, H.G.A., Portnoy, D.A. and Frankel, F.R. (1998) Pathogenicity and Immunogenicity of a Listeria onocytogenes Strain that Requires D-Alanine for Growth. Infection and Immunity, 66, 3552-3561.
[30] Enright, M.C. and B.G. (1999) Spratt. Multilocus Sequence Typing. Trends in Microbiology, 7, 482-487.
[31] Salcedo, C., Arreaza, L., Alcala, B., De La Fuente, L. and Vazquez, J.A. (2003) Development of a Multilocus Sequence Typing Method for Analysis of Listeria monocytogenes Clones. Journal of Clinical Microbiology, 41, 757-762.
[32] Schouls, L.M., Reulen, S., Duim, B., Wagenaar, J.A., Willems, R.J.L., Dingle, K.E., Colles, F.M. and Van Embden, J.D.A. (2003) Comparative Genotyping of Campylobacter jejuni by Amplified Fragment Length Polymorphism, Multilocus Sequence Typing, and Short Repeat Sequencing: Strain Diversity, Host Range, and Recombination. Journal of Clinical Microbiology, 41, 15-26.
[33] Suerbaum, S., Lohrengel, M., Sonnevend, A., Ruberg, F. and Kist, M. (2001) Allelic Diversity and Recombination in Campylobacter jejuni. Journal of Bacteriology, 183, 2553-2559.
[34] Hedberg, C.W., Smith, K.E., Besser, J.M., Boxrud, D.J., Hennessy, T.W., Bender, J.B., Anderson, F.A. and Osterholm, M.T. (2001) Limitations of Pulsed-Field Gel Electrophoresis for the Routine Surveillance of Campylobacter Infections. Journal of Infectious Diseases, 184, 242-243.
[35] Lin, D., Lehmann, P.F., Hamory, B.H., Padhye, A.A., Durry, E., Pinner, R.W. and Lasker, B.A. (1995) Comparison of Three Typing Methods for Clinical and Environmental Isolates of Aspergillus fumigatus. Journal of Clinical Microbiology, 33, 1596-1601.
[36] Dingle, K.E., Colles, F.M., Falush, D. and Maiden, M.C. (2005) Sequence Typing and Comparison of Population Biology of Campylobacter coli and Campylobacter jejuni. Journal of Clinical Microbiology, 43, 340-347.
[37] Nielsen, E.M., Engberg, J., Fussing, V., Petersen, L., Brogren, C.H. and On, S.L. (2000) Evaluation of Phenotypic and Genotypic Methods for Subtyping Campylobacter jejuni Isolates from Humans, Poultry, and Cattle. Journal of Clinical Microbiology, 38, 3800-3810.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.