Epilepsy Aspects and EEG Patterns in Neuro-Metabolic Diseases


Neurometabolic diseases (NMD) are a frequent cause of epilepsy in children. Epilepsy is more frequently part of a complex clinical picture than a predominant symptom and may be of different types and various EEG patterns. The primary goal of this article is, departing from a large personal series, to describe the seizure type, EEG patterns and response to antiepileptic drugs in NMD and to discuss clinical value of epilepsy type in the setting of specific NMD. We found epilepsy was associated to NMD in 43.1%. Disorders of energy metabolism were the most frequent cause of epilepsy (61.3%). We observed generalized epilepsy in 75% of the patients with partial epilepsy in 25%. EEG was abnormal in only 71% of cases with variable patterns. Resistance to antiepileptic drugs was observed in 75% of cases. Valproate acid was incriminated in seizure worsening in 22.7% of the patients, all of them affected by mitochondriopathies.

Share and Cite:

I. Youssef-Turki, I. Kraoua, S. Smirani, K. Mariem, H. BenRhouma, A. Rouissi and N. Gouider-Khouja, "Epilepsy Aspects and EEG Patterns in Neuro-Metabolic Diseases," Journal of Behavioral and Brain Science, Vol. 1 No. 2, 2011, pp. 69-74. doi: 10.4236/jbbs.2011.12009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. M. Saudubray, F. Sedel and J. H. Walter, “Clinical Ap- proach to Treatable Inborn Metabolic Diseases: An Intro- duction,” Journal of Inherited Metabolic Disease, Vol. 29, No. 2-3, 2006, pp. 261-274. doi:10.1007/s10545-006-0358-0
[2] N. Bahi-Buisson, K. Mention, P. L. Léger, et al., “Neona- tal Epilepsy and Inborn Errors of Metabolism,” Archives de Pédiatrie, Vol. 13, No. 3, 2006, pp. 284-292.
[3] D. C. De Vivo, “Inherited Metabolic Disorders and Seizures in Infancy,” Journal of Child Neurology, Vol. 17, 2002, pp. 3S1-3S2.
[4] D. R. Jr. Nordli and D. C. De Vivo, “Classification of Infantile Seizures: Implications for Identification and Treatment of Inborn Errors of Metabolism,” Journal of Child Neurology, Vol. 17, 2002, pp. 3S3-3S7.
[5] J. M. Pascual, J. Campistol and A. Gil-Nagel, “Epilepsy in Inherited Metabolic Disorders,” Neurologist, Vol. 14, 2008, pp. S2-S14.
[6] P. L. Pearl, H. D. Bennett and Z. Khademian, “Seizures and Metabolic Disease,” Current Neurology and Neuroscience Reports, Vol. 5, No. 2, 2005, pp. 127-133.
[7] F. Sedel, I. Gourfinkel-An, O. Lyon-Caen, M. Baulac, J. M. Saudubray and V. Navarro, “Epilepsy and Inborn Errors of Metabolism in Adults: A Diagnostic Approach,” Journal of Inherited Metabolic Disease, Vol. 30, No. 6, 2007, pp. 846-854. doi:10.1007/s10545-007-0723-7
[8] S. St?ckler-Ipsiroglu and B. Plecko, “Metabolic Epilepsies: Approaches to a Diagnostic Challenge,” Canadian Journal of Neurological Sciences, Vol. 36, 2009, pp. S67-S72.
[9] F. Vigevano and A. Bartuli, “Infantile Epileptic Syndromes and Metabolic Etiologies,” Journal of Child Neurology, Vol. 17, 2002, pp. S9-S13.
[10] N. I. Wolf, T. Bast and R. Surtees, “Epilepsy in Inborn Errors of Metabolism,” Epileptic Disorders, Vol. 7, No. 2, 2005, pp. 67-81.
[11] N. I. Wolf, A. García-Cazorla and G. F. Hoffmann, “Epilepsy and Inborn Errors of Metabolism in Children,” Journal of Inherited Metabolic Disease, Vol. 32, No. 5, 2009, pp. 609-617.
[12] D. A. Applegarth and J. R Toone, “Glycine Encepha- Lopathy (Nonketotic Hyperglycinaemia): Review and Update,” Journal of Inherited Metabolic Disease, Vol. 27, No. 3, 2004, pp. 417-422.
[13] P. Baxter, P. Griffiths, T. Kelly, et al., “Pyridoxine-depen- dent Seizures: Demographic, Clinical, MRI and Psychometric Features, and Effect of Dose on Intelligence Quotient,” Developmental Medicine & Child Neurology, Vol. 38, No. 11, 1996, pp. 998-1006.
[14] M. F. Kuo and H. S. Wang, “Pyridoxal Phosphate-res- ponsive Epilepsy with Resistance to Pyridoxine,” Pedia- tric Neurology, Vol. 26, No. 2, 2002, pp. 146-147. doi:10.1016/S0887-8994(01)00357-5
[15] O. A. Torres, V. S. Miller, N. M. Buist, et al., “Folinic Acid-responsive Neonatal Seizures,” Journal of Child Neurology, Vol. 14, 1999, pp. 529-532. doi:10.1177/088307389901400809
[16] J. E. Collins, N. S. Nicholson, N. Dalton, et al., “Biotini- dase Deficiency: Early Neurological Presentation,” Developmental Medicine & Child Neurology, Vol. 36, 1994, pp. 268-270.
[17] B. A. Salbert, J. M. Pellock and B. Wolf, “Characterization of Seizures Associated with Biotinidase Deficiency,” Neurology, Vol. 43, No. 7, 1993, pp.1351-1355.
[18] T. J. De Koning and L. W. Klomp, “Serine-deficiency Syndromes,” Current Opinion in Neurology, Vol. 17, No. 2, 2004, pp. 197-204. doi:10.1097/00019052-200404000-00019
[19] K. Brockmann, D. Wang, C. G. Korenke, et al., “Auto- somal Dominant Glut-1 Deficiency Syndrome and Familial Epilepsy,” Annals of Neurology, Vol. 50, 2001, pp. 476-485. doi:10.1002/ana.1222
[20] J. Finsterer, “Central Nervous System Manifestations of Mitochondrial Disorders,” Acta Neurologica Scandi- navica, Vol. 114, 2006, pp. 217-238.
[21] A. B. Dublin, J. K. Hald and S. L. Wootton-Gorges, “Isolated Sulfite Oxidase Deficiency: MR Imaging Features,” American Journal of Neuroradiology, Vol. 23, No. 3, 2002, pp. 484-485.
[22] G. Van den Berghe, M. F. Vincent and J. Jaeken, “Inborn Errors of the Purine Nucleotide Cycle: Adenylosuccinase Deficiency,” Journal of Inherited Metabolic Disease, Vol. 20, No. 2, 1997, pp.193-202. doi:10.1023/A:1005304722259
[23] P. L. Pearl, K. M. Gibson, M. T. Acosta, et al., “Clinical Spectrum of Succinic Semialdehyde Dehydrogenase Defi- ciency,” Neurology, Vol. 60, No. 9, 2003, pp.1413-1417.
[24] Y. Takahashi, Y. Suzuki, K. Kumazaki, et al., “Epilepsy in Peroxisomal Diseases,” Epilepsia, Vol. 38, No. 2, 1997, pp. 182-188. doi:10.1111/j.1528-1157.1997.tb01095.x
[25] T. Marquardt and J. Denecke, “Congenital Disorders of Glycosylation: Review of Their Molecular Bases, Clinical Presentations and Specific Therapies,” European Journal of Pediatrics, Vol. 162, No. 6, 2003, pp. 359-379.
[26] A. Shahwan, M. Farrell and N. Delanty, “Progressive Myoclonic Epilepsies: A Review of Genetic and Therapeutic Aspects,” The Lancet Neurology, Vol. 4, No. 4, 2005, pp. 239-248. doi:10.1016/S1474-4422(05)70043-0
[27] K. E. Wisniewski, N. Zhong and M. Philippart, “Pheno/genotypic Correlations of Neuronal Ceroid Lipofuscinoses,” Neurology, Vol. 57, No. 4 , 2001, pp. 576-581.
[28] J. A. Lowden and J. S. O’Brien, “Sialidosis: A Review of Human Neuraminidase Deficiency,” American Journal of Human Genetics, Vol. 31, No. 1, 1979, pp. 1-18.
[29] A. Federico, S. Battistini, S. G. Ciacci, et al., “Cherry-red Spot Myoclonus Syndrome (Type I Sialidosis),” Develop- mental Neuroscience, Vol. 13, 1991, pp. 320-326.
[30] J. K. Park, E. Orvisky, N. Tayebi, et al., “Myoclonic Epilepsy in Gaucher Disease: Genotype-phenotype Insights from a Rare Patient Subgroup,” Pediatric Research, Vol. 53, No. 3, 2003, pp. 387-395.
[31] M. Sevin, G. Lesca, N. Baumann, et al., “The Adult form of Niemann-Pick Disease Type C,” Brain, Vol. 130, No. 1, 2007, pp.120-133. doi:10.1093/brain/awl260
[32] S. Ganesh, R. Puri, S. Singh, S. Mittal and D. Dubey, “Recent Advances in the Molecular Basis of Lafora’s Progressive Myoclonus Epilepsy,” Journal of Human Genetics, Vol. 51, No. 1, 2006, pp. 1-8.
[33] V. Leuzzi, “Inborn Errors of Creatine Metabolism and Epilepsy: Clinical Features, Diagnosis, and Treatment,” Journal of Child Neurology, Vol. 17, 2002, pp. S89-S97.
[34] A. S. Winkler, T. J. Peters and R. D. Elwes, “Neuropsychiatric Porphyria in Patients with Refractory Epilepsy: Report of Three Cases,” Journal of Neurology, Neurosurgery & Psychiatry, Vol. 76, No. 3, 2005, pp. 380-383.
[35] G. M. Enns, “Neurologic Damage and Neurocognitive Dysfunction in Urea Cycle Disorders,” Seminars in Pediatric Neurology, Vol. 15, No. 3, 2008, pp. 132-139. doi:10.1016/j.spen.2008.05.007

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.