[1]
|
Pawlak, Z. (1991) Rough Sets—Theoretical Aspects of Reasoning about Data. Kluwer Academic, Dordrecht.
|
[2]
|
Ganter, B. and Wille, R. (l999) Formal Concept Analysis: Mathematical Foundation. Springer-Verlag, New York.
|
[3]
|
Kent, R.E. (1994) Rough Concept Analysis. In: Ziarko, W.P., Ed., Rough Sets and Fuzzy Sets Knowledge Discovery, Springer-Verlag, London, 248-255. http://dx.doi.org/10.1007/978-1-4471-3238-7_30
|
[4]
|
Yao, Y.Y. (2004) Concept Lattices in Rough Set Theory. In: Dick, S., Kurgan, L., Pedrycz, W. and Reformat, M., Eds., Proceedings of the 2004 Annual Meeting of the Noah American Fuzzy Information Processing Society, Banff, 27-30 June 2004, 796-801.
|
[5]
|
Qu, K.S., Zhai, Y.H., Liang, J.Y., et al. (2007) Representation and Extension of Rough Set Theory Based on Formal Concept Analysis. Journal of Software, 18, 2174-2182. http://dx.doi.org/10.1360/jos182174
|
[6]
|
Pawlak, Z. (1998) Granularity of Knowledge, Indiscernibility and Rough Sets. The 1998 IEEE International Conference on Fuzzy Systems Proceedings—IEEE World Congress on Computational Intelligence, Anchorage, 4-9 May 1998, 106-110.
|
[7]
|
Wu, C., Yue, Y., Li, M., et al. (2004) The Rough Set Theory and Applications. Engineering Computations, 21, 488-511. http://dx.doi.org/10.1108/02644400410545092
|
[8]
|
Scaife, M. and Rogers, Y. (1996) External Cognition: How Do Graphical Representations Work. International Journal of Human Computer Studies, 45, 185-213.
|
[9]
|
Godin, R., Missaoui, R. and Alaoui, H. (1995) Incremental Concept Formation Algorithms Based on Galois (coNcept) Lattices. Computational Intelligence, 11, 246-267. http://dx.doi.org/10.1111/j.1467-8640.1995.tb00031.x
|